MARKER CODE	
4 5 4	
7 7 3	

Stu	Student Personal Identification Number					
	FE	(E)	58	21	18	
	-24	10	is:	- Si	69	

Solomon Islands National Form Six School Certificate 2018

CHEMISTRY QUESTION AND ANSWER BOOKLET

WEDNESDAY 14th NOVEMBER 2:00 PM TIME: 3 Hours Plus 10 Minutes Reading Time.

INSTRUCTION

1. This Exam Paper consists of TWO (2) sections. ATTEMPT ALL QUESTIONS.

		MARKS	TIME
SECTION A:	Multiple Choice Questions	40	36 minutes
SECTION B:	Q21: Atomic Structure and Bonding	24	21 minutes
	Q22: Quantitative Chemistry	32	23 minutes
	Q23: Organic Chemistry	27	23 minutes
	Q24: More Organic Chemistry	17	17 minutes
	Q25: Inorganic Chemistry	16	18 minutes
	Q26: Oxidation and Reduction	16	18 minutes
	Q27: Principle of Physical Chemistry	28	24 minutes
TOTAL.		200	180 minutes

- 2. Write your **Student Personal Identification Number (SPIN)** on the top right hand corner of this page and at the top of the **fold-Out flap** on the last page at the end of this booklet.
- 3. Write all answers to the Multiple Choice Questions on the answer sheet on the **FOLD-OUT FLAP** on the last page.
- 4. In SECTION B, write the answers to the questions in the spaces provided in this booklet.

NOTE: A copy of the **Periodic Table of the Elements – Sheet** should be provided. The symbol M is used for molar mass.

- For example, M (Mg) = 24 g/mol, M (CO₂) = 44 g/mol and M (NH₃) = 17 g/mol
- Do NOT use correction fluid.
- 6. Mobile phones are NOT allowed in the Examination room.
- 7. Check that this booklet contains pages **2-38** in the correct order and none of these pages is blank. **Page 37** has been left blank deliberately.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

SECTION A: MULTIPLE CHOICE QUESTIONS

(40 MARKS)

Answer all the questions in this section. Write your best choice answer in the boxes of the fold-out flap provided on the back of this booklet. Each question is worth 2 marks.

1. The atoms of isotope Boron denoted by $^{11}_{5}$ B has a composition denoted by which row of the table below?

	Protons	Neutrons	Electrons
Α	5	5	5
В	5	6	6
С	5	6	5
D	6	5	5

- 2. Which of the following molecules is a Tetrahedral?
 - A. Water (H₂O)
 - B. Methane (CH₄)
 - C. Carbon dioxide (CO₂)
 - D. Ammonia (NH₃)
- 3. Which of the following is true about the relationship between the Atomic radii and the first ionization energy of the elements, across period 3 in the periodic table?

	Atomic Radii	First Ionization (IE)
A.	Decrease	Decrease
B.	Decrease	Increase
C.	Increase	Decrease
D.	Increase	Increase

- 4. How many atoms are there in 18g of H_2O ?
 - A. 6×10^{23}
 - B. 9×10^{23}
 - C. 12×10^{23}
 - D. 18 x 10²³

- 5. Nitrogen dioxide has the molecular formula NO₂ and a molar mass of 46g/mol. How much NO₂ (in moles) is present in 0.92kg of NO₂?
 - A. 0.2
 - B. 42.3
 - C. 2.0
 - D. 20.0
- 6. The mass of 0.2 moles of Calcium Oxide is: M(Ca) = 40 g/mol M(O) = 16 g/mol.
 - A. 1.9 g
 - B. 19.2 g
 - C. 1.2 g
 - D. 11.2 g
- 7. 24.5 g of anhydrous Magnesium hydroxide is dissolved to a volume of 350 ml solution. The Molarity of the solution is:

M (Mg) = 24 g/mol M (O) = 16 g/mol M (H) = 1 g/mol

- A. 0.21 mol/l
- B. 2.09 mol/l
- C. 20.8 mol/l
- D. 208.9 mol/l
- 8. Which of the following is the condense structural isomer of methyl propene?
 - A. CH₃CH₂CH₃
 - B. CH₂CHCH₃
 - C. CH₃CH₂CH₂CH₃
 - D. CH₃CHCHCH₃

9. What is the name of the reaction used to produce ethane from ethene and the process occurring when polyvinyl chloride is made from vinyl chloride?

	Reaction	Process	
Α	Addition	Polymerization	
В	Substitution	dehydration	
С	Addition	Saturation	
D	Substitution	Polymerization	

10. Bromine water test is used as a positive test to determine _____ compound as the color _____.

	Compound	Reaction
Α	hydrocarbon	change to colorless
В	saturated hydrocarbons	remains the same (brown)
	unsaturated hydrocar-	change to colorless
١	bons	
D	Aromatic	change colorless to brown

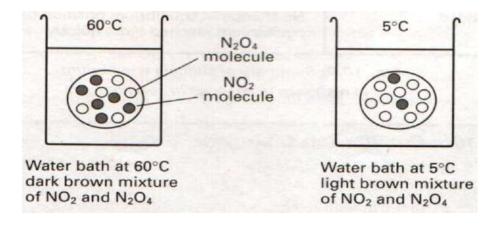
11. A propanol when undergoes reaction with acidified potassium dichromate solution forms an intermediate product called ______ and fully oxidized to ______.

	Intermediate product	Main product
A.	Propanoic acid	Propanone
B.	Propanoic acid	Propanal
C.	Propene	Propanol
D.	Propanal	Propanoic acid

12. The general formula for an Ketone compound is:

- A. R—CO—OH
- B. R-O-R'
- C. R-CO-OR'
- D. R-CO-H

13. The process used to produce ethyl propanoate ester is an example of ______ reaction. Redox A. В. Neutralization C. Saponification Condensation D. 14. Which Oxide compound has the highest melting point? A. Na_2O B. Al_2O_3 C. P₄O₁₀ D. SO₃ 15. According to your study on solubility rules, what is the precipitation formed when solution Barium chloride and Sodium carbonate react? Α. BaCl₂ Na₂CO₃ В. C. BaCO₃ NaCl D. 16. What is the oxidation number of chromium in dichromate ion $(Cr_2O_7^{2-})$? A. ⁺6 B. +7 C. 6+ 7+ D. 17. Which one of the following is a Reduction reaction? (The equations are not balanced).


- 18. Which of the following is TRUE about Exothermic process?
 - A. Reactants and products have the same energy.
 - B. The products contain more energy than the reactant.
 - C. The reactants contain more energy than the product.
 - D. The surrounding of the reactant vessel decrease in temperature as the reaction proceeds.
- 19. The reaction for the combustion of carbon monoxide is:

$$2CO_{(g)} + O_{2(g)} \longrightarrow 2CO_{2(g)}; \Delta H = -566kJ$$

The heat energy released when one mole of carbon monoxide burn is;

- A. 566 kJ
- B. 283 kJ
- C. 620 kJ
- D. 1560 kJ
- 20. The equation represent the equilibrium system due to change of temperature:

$$N_2O_4$$
 (g) $\Delta H = {}^+54kJ$

The above equation represents which situation?

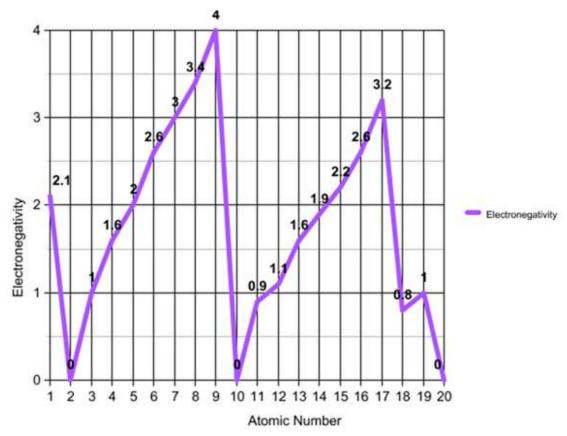
- A. Decrease temperature and endothermic direction.
- B. Increase temperature and exothermic direction.
- C. Decrease temperature and exothermic direction.
- D. Increase temperature and endothermic direction.

SECTION B: SHORT ANSWER QUESTIONS

(160 MARKS)

Answer questions (21 - 27) in the space provided. All calculations must be showed as required by each question.

<u>Qι</u>	JESTION 21:	ATOMIC STRUCTURES AND BONDING	[24 MARKS]
A.	Periodic Tabl	e	
1.	Write the e notation.	lectron configuration for the atom and ion be	elow using s, p, d, f
	i. F		
	ii. Mg ²⁺		
			(2 marks)
2.	From quest	ion 1, identify and explain which of them is n	nore stable.
	Name and g	give the reason for your answer.	
	(i) Name: _		
			(1 mark
	(ii) Reason:		
			(1 mark


- 3. Identify and circle the phrase below that best describes the **relationship** between the size of the fluoride ion and magnesium ion.
 - i. F^- is larger than Mg^{2+} F^- is the same as Mg^{2+} F^- is smaller than Mg^{2+}

(1 mark)

ii.		
		(2 marks)

4. Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons.

Study the first 20 element's electronegativity below and answer the follow up questions (i - iii).

i. Explain the trend across the Periodic Table.

ii.	Explain the trend down the Group.
	(2 marks)
iii.	Explain why the stable elements according to the electronegativity graph above are given the same value.

B. Structure and Bonding

1. Study the information in the table and write the answers in the spaces provided below.

Column A	Column B	Column C	Column D
Compound	Interaction	Melting point	Type of solid
Sodium chloride	Ionic	High	Ionic
Discrete Carbon dioxide	London dispersion	i	Molecular
Magnesium	Metallic Bonding	High	Metallic
Silicon dioxide	Covalent Bonding	High	ii

			(2 marks)
2.	Differ	entiate the following terms with relevant examples.	
	(i)	Intra molecular and inter molecular forces	
			(2 marks)
	(ii) 	Van der waal forces and Hydrogen forces	
			(2 marks)
	(iii)	Polar and Non-polar covalent bonds	
			(2 marks)
C.	Shape	es of Molecules	
1.	Deter	mine the geometry shape of Tetrachloroethane (CCI $_4$) $_1$	molecule.
	(i)	Shape	 (1 mark)

Missing words/ properties

Give reasons for your answer in C.1 (i) above.		
		(2 marks)

QUESTION 22: QUANTITATIVE CHEMISTRY [32 MARKS]

A. Moles and Molar Mass

- 1. Every ion, atom, molecule and compounds contain $6.02x10^{23}$, which is the Avogadro's number (N_A).
 - i. Using the N_A to find the amount of potassium ions in 1.8 x10²⁴ of potassium nitrate.

(2 marks)

- 2. A 2.3 moles of Aluminum oxide (Al_2O_3) is used in a class experiment. M (Al) = 27.0 g/mol, M (O) = 16.0 g/mol
 - i. Calculate the mass of the oxide.

B.	Empirical	and N	10locular	Formulae
D.	Empiricai	and iv	ioiecular	rormuiae

1.		percent composition of a compound is a relative measure of the merent element present in the compound.	ass of each
	i.	Calculate the percentage of sodium in caustic soda (NaOH). M (Na) = 23.0 g/mol , M (O) = 16 g/mol , M (H) = 1.0 g/mol	
			(2 marks)
2.		ompound contains 19.3% Na, 26.9% S and 53.8% O. Its molar mass Na) = 23.0 g/mol, M (S) = 32.1 g/mol, M (O) = 16.0 g/mol	s is 238.0 g/mol.
	i.	Calculate the moles of each element.	
			(2 marks)
	ii.	Calculate the Empirical formula of the Compound.	
			(2 marks)

	iii.	Determine the Molecular formula of the Compound.	
			(2 marks)
C.	Stoi	ichiometry Reactions	
1.	Use	the equation below to answer questions (i and ii).	
	Mg	(s) + HCl (aq) \longrightarrow MgCl ₂ (aq) + H ₂ (g)	
	i.	How many grams of magnesium chloride will form if 3.6g of Magr with hydrochloric acid? Assuming, magnesium is the limiting read	
		M (Mg) = 24.0 g/mol, M (Cl) = 35.5 g/mol, M (O) = 16.0 g/mo	I
			(2 marks)
	ii.	Calculate the theoretical mole of hydrochloric acid that have bein	ng used?
			(2 marks)

Calci	ium burns in air to form Calcium oxide. The equation for the reaction	on is:
Ca (s)	$O_{2(g)} \longrightarrow CaO_{(s)}$	
M (C	Ca) = 40.0 g/mol, M (O) = 16.0 g/mol	
Δ sti	udent weighed out 4.8g of calcium and burned it.	
i.	Rewrite and balance the above equation.	
1.	Newrite and balance the above equation.	
		(1 mark)
		(I mark)
ii.	Find the amount of calcium used.	
		(1 mark)
		(=,
iii.	Calculate the mass of calcium oxide produced in the reaction.	
		(2 marks)

2.

D. Acids and Bases

laboratory.

1.

i. Write the correct steps of how to prepare a standard solution in the science

Preparation of primary standard solutions.

a. _____

b. _____

C. _____

d. _____

(4 marks)

2. A student was asked to prepare a standard solution of 0.2 mol/L sodium carbonate (Na_2CO_3) using 100 ml volumetric flask.

M (Na) = 23.0 g/mol M (C) = 12.0 g/mol M (O) = 16.0 g/mol

i. Calculated the mass of sodium carbonate the student should weigh;

3.	The prepared 0.2 mol/L of sodium carbonate is used to standardize the 20.0 ml of diluted
	citric acid (lemon juice). The table below provides the volumes of sodium citrate used
	in the titration. Citric acid has a molar mass of 192.1 g/mol.

Titration	Burette rea	Burette reading in ml	
	Initial	final	(ml)
1(Pilot)	0.0	23.3	23.3
2	23.3	46.2	22.9
3	0.0	22.8	22.8
4	22.8	45.6	22.8

i. Find the average volume.

(1 mark)

ii. Calculate the diluted concentration of Citric acid (mol/L).

(3 marks)

iii.	Calculate the Original concentration (mol/L) if 20.0 ml of diluted into 100.0 ml of the solution.	original lemon juice is
		(2 marks)

QUESTION 23: ORGANIC CHEMISTRY [27 MARKS]

A. Nomenclature

2.

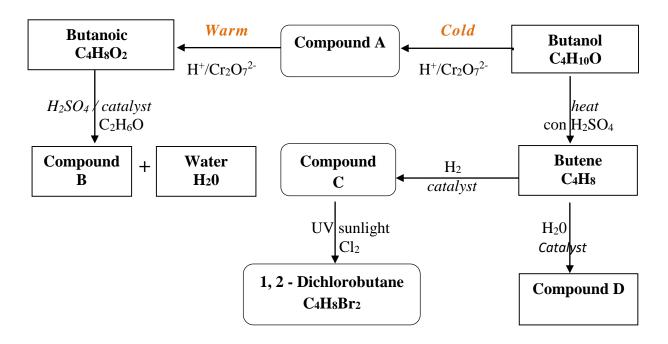
1. Write the names and structural formulas of	of the follo	wing organi	c compounds.
---	--------------	-------------	--------------

	Compound	Name	Structural Formula
	CH ₃ CH ₂ CH ₃		
С	H ₃ CH ₂ CH ₂ CHBrCH ₂ Br		
	CH ₃ CH ₂ CH ₂ CH ₂ CO ₂ H		
			(6 marks)
Defi	ne the following terms	:	
i.	Structural isomer		
			(1 mark)
ii.	Functional group		
			(1 mark)
iii.	Saturated hydrocarbo	on	

(1 mark)

B. Chemical Reactions

1.	The	unsaturated hydrocarbons can undergo substitution reactions.	
	i.	Name the products form.	
		a. Hydrogenation (H ₂) of Ethene.	
		Product:	/1 mank)
			(1 mark)
		b. Fluorination (F ₂) of propene.	
		Product:	
			(1 mark)
		c. Hydration (H ₂ O) of Butene	
		Product:	
			(1 mark)
2.		v do primary, secondary and tertiary alcohols differ in their reactassium dichromate solution (Cr ₂ O ₇ ²⁻ /H ⁺)?	tions with acidified
	i.	Primary alcohol:	
			(1 mark)
	ii.	Secondary alcohol:	
		,	(1 mark)
	iii.	Tertiary alcohol:	
			(1 mark)


	Explain the changes in the observation.	
		(2 marks)
ii.	Identify the TWO (2) substances that cause the color change.	
		(2 marks)
Car	bonyl Compounds	
Soa	p making involves the alkaline hydrolysis of triesters of glycerol.	
-0-	O -C(CH ₂) ₁₄ CH ₃	
-0-	O C—(CH ₂) ₁₄ —CH ₃ + 3 NaOH → a:+ b:	
-0—	O C-(CH ₂) ₁₄ CH ₃	(2 marks)
Trig	lyceride	
i.	Complete the above hydrolysis by writing the balanced condemula of the palmitate soap and glycerol in the space provided.	ense structural

phobic.	
	(2 marks)
Describe how the soap behaves in hard and soft water.	
	(2 marks)

QUESTION 24: MORE ORGANIC CHEMISTRY [17 MARKS]

A. Organic compound synthesis reactions

1. Study the diagram and answer the associated questions (1 and 2) below.

- i. Give the **correct** name for the following Organic compounds.
 - a. Compound A _____
 - b. Compound B _____
 - c. Compound C
 - d. Compound D

(4 marks)

2.		Compound A has a carbonyl carbon. In fact, to conduct a test for this compound, Tollen's test is normally used. Give the positive tests for compound A when using;						
	i.	Tolle	n test.					
		a.	Color and positive test					
			(1 mark)					
		b.	Brief explain what happens to compound A during the reaction / test.					
			(2 marks)					
	ii.	Draw	the structural formula (SF) of compound A in the space provided below.					
	S	F:						
			(2 marks)					

i.	Write the balanced equation for the formation of compound B.
E	quation:
	(2 marks)
ii.	In the esterification reaction the refluxing process is used. Explain how efficient this process for the production of esters.
	(2 marks)
iii.	Explain the role of the concentrated sulfuric acid (H ₂ SO ₄) in the above reaction
	(2 marks)
Giv	e the observation for the reaction occurring when Compound D is warmed with
i.	Potassium permanganate.
ii.	Potassium dichromate.
	(1 mark)

QUESTION 25: INORGANIC CHEMISTRY

[16 MARKS]

A. Properties of Period 3 Compounds

1. The table showing the elements of Period 3 Oxides. Use the table to answer questions (i and ii).

Element	Na	Mg	Al	Si	Р	S
Chloride	NaCl	MgCl ₂	AlCl ₃	а	PCl ₃	SCl ₂
Acid-Base be- havior	neutral	neutral	b	←	— acidic	→
Melting point (°C)	801	712	Sublimes At 180	-70	-91	-80
Conductivity	С	-	ieous & olten	← n	on conducto	ors>

				(3 marks
ain the huge diff	erence betwe	en the meltin	g points of Na	ıCl and PCl ₃ .
a				in the huge difference between the melting points of Na

exti	racted by evaporation.						
i.	State at least TWO (2) physical properties of Chlorine.						
	a						
	b						
			(2 marks				
ii.		with water to produce acidic solut s. Write the chemical equation of	· ·				
E	Equation:						
	quation:						
	quation:		(2 mar				
Solu	ubility and Precipita	tion different ions, their tests and resu	·				
Solu	ubility and Precipita		·				

(4 marks)

Pale yellow precipitate

iii_____

Dilute Sodium hydroxide

Dilute nitric acid and AgNO₃

(NaOH)

solution

Silver (Ag+)

iv_____

		hnician forgets to put labels on $[Cu (NH_3)_4]^{2+}$ and $[Al (OH)_4]^{-}$ ions sof the test tube 1 looks colorless and test tube 2 looks blue.	samples. ⁻
i.	Give	e the name given to the $[Cu(NH_3)_4]^{2+}$ and $[Al(OH)_4]^{-1}$ ions	
		(1 mark)
i.	Wh	ich test tube and color contains:	
	a.	[Cu (NH ₃) ₄] ²⁺ ions?	
		(2	1 mark)
	b.	[Al (OH) ₄] ⁻ ions?	
		(1 mark)

2.

QUETION 26: OXIDATION AND REDUCTION [16 MARKS]

A. Oxidation State

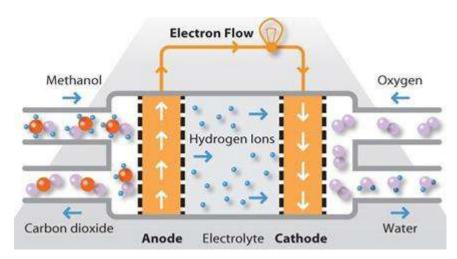
1.	char	ox reaction is a chemical reaction in which the oxidation state nged. Such reaction involves both a reduction process and oxidation of this reaction also demands using of appropriate terms.	
	i.	Define the following terms :	
		a. Oxidation number	
			(1 mark)
		b. Reduction reaction	(=)
			(1 mark)
	ii.	Determine the trend of oxidation number of Mn in the equation, $MnO_4^- \longrightarrow Mn^{2+}$.	
			(2 marks)

В.	Oxida	nt an	d Rec	ductant
υ.	ONIGE	ııı aıı	u ne	auctant

1.		ear understanding of the nature of redox reaction will pave way to distinguish e oxidation and reduction half equations.				
	i.	Def	fine these terms :			
		a.	Oxidizing agent			
				(1 mark)		
		b.	Reducing agent			
				(1 mark)		
	the St u	trans dy the	entally, redox reactions are a family of reactions that are consfer of electrons between species. The oxidation-reduction reaction below and do the follow up $+ SO_{2 (aq)} \longrightarrow Cu_{(s)} + SO_{4^{2-}(aq)}$ The and balance the;			
		a. F	Reduction half equation			
				(2 marks)		
		b. 	Oxidation half equation.			

c. Overall equation from (a) and (b)

(2 marks)


C. Fuel Cell

 The Direct-methanol fuel cell (DMFCs) is subcategory of proton-exchange fuel cells in which methanol is used as the fuel. The DMFC relies upon the oxidation of methanol on a catalyst layer to form carbon dioxide. Water is consumed at the anode and is produced at the cathode. The hybrid DMFC/ battery can used to power cell phones and 2-way radios

The equation below represents the reaction occurring in the methanol fuel cell;

$$CH_3OH + O_2 \longrightarrow CO_2 + H_2O$$

Study the diagram below and answer questions (i and ii).

i. Cathode.	
	(2 marks)
ii. Anode	
	(2 marks)

Describe what happens at the respective electrodes and support it with the right half

redox equation.

QUESTION 27: PRINCIPLES OF PHYSICAL CHEMISTRY [28 MARKS]

A. Energy Changes

The	reaction of zinc metal with dilute hydrochloric acid gives out h	eat.
i.	Write a balanced equation for the reaction.	
		(2 marks
ii.	Which contains the most energy, reactant or product?	
		(1 mark
iii.	What is the sign of the enthalpy change (ΔH)?	
		(1 mark
iv.	What type of reaction is it?	
		(1 mark

v. Sketch an **energy diagram** for the reaction. Label products and reactant on the diagram.

(2 marks)

- 2. Hess's law states that the change of enthalpy in a chemical reaction is independent of the pathway between the initial and final states. In other words, the overall enthalpy change is the same regardless of the route by which the chemical change occurs.
 - i. Describe what will happen according to rule if a reaction is reversed according to Hess law's calculation of energy is concern.

(1 mark)

ii. What is the valve for ΔH for the following reactions?

$$CS_{2 (I)}$$
 + $3O_{2 (g)}$ \longrightarrow $CO_{2 (g)}$ + $2 SO_{2 (g)}$

Given:

1)
$$C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} \Delta H = -393.5kJ$$

2)
$$S_{2(s)} + O_{2(g)} \longrightarrow SO_{2(g)} \Delta H = -296.8kJ$$

3)
$$C_{(s)} + 2S_{(s)} \longrightarrow CS_{2(1)} \Delta H = 87.9kJ$$

(4 marks)

B. Rate of reaction

1. A student had investigated the rate of reaction between the calcium lump and hydrochloric acid.

$$Ca_{(s)} + HCI_{(aq)} \longrightarrow CaCI_{2(aq)} + H_{2(g)}$$

The experiments were carried out at a constant temperature.

Experiments	Mass of Ca lump (grams)	Volume of HCL (ml)	Concentration of HCl (mol/L)
1	6.0	25.0	0.5
2	6.0	25.0	1.0
3	6.0	25.0	2.0

 Which reaction would be the fastes 	i.	Which react	ion would	be the	fastes
--	----	-------------	-----------	--------	--------

	(1 mark
Give a reason for your answer.	
·	
	(1 mark

- ii. State TWO (2) other factors that could be used to increase the rate of this reaction.
 - a. _____
 - b. _____

C. Equilibrium system

:	Evn	lain what is the Le Chatelier's principle and its limitation	
i.	Ехр	lain what is the Le Chatelier's principle and its limitation.	
			(2 marks)
ii.	For	the equilibrium reaction, $PCl_{3 (g)} + Cl_{2 (g)} \iff PCl_{5 (g)}$.	
		efly explain the effect or shift of the equilibrium.	
	a.	Decreasing the pressure	
	a.	becreasing the pressure	
			(2 marks)
	b.	Adding of chlorine gas	
			(2 marks)
	c.	Adding a catalyst	
			(2 marks)

D. Acids and Bases

ii.

1. Identify the acid-base conjugates when ammonia (NH₃) reacting with hydrochloric acid (HCl). Write the formula of:

$$NH_{3 (aq)} + HCI_{(aq)} \longrightarrow NH_{4}^{+}_{(aq)} + CI_{(aq)}^{-}$$

- i. Conjugate acid: ______
 - Conjugated base: ______

(2 marks)

2. Complete the table below to show the hydronium in concentration $[H_3O^+]$, hydroxide ion concentration $[OH^-]$ and pH for the solutions.

Solution	[H₃O⁺] mol/L	[OH ⁻] mol/L	рН
А	i	1.2 x 10⁻ ⁸	6.1
В	1.2 x 10 ⁻¹¹	8.1 x 10 ⁻⁴	ii

This page has been left blank deliberately

SINF6 - CHEMISTRY 2018

Student Personal Identification Number						er
	138	15	88	31	D	- 3
2	- 2i	E	185	- 4	Ko.	- 6

SECTION A:

	Multip	le Choi	ce
1.		11.	
2.		12.	
3.		13.	
4.		14.	
5.		15.	
6.		16.	
7.		17.	
8.		18.	
9.		19.	
10.		20.	

SECTION	EXAM MARK	MARKER	SCRIPT CHECKER
A	40		
B.21	24		
B.22	32		
В.23.	27		
B.24	17		
B.25	16		
B.26	16		
B.27	28		
TOTAL MARK	200		
Marker/Ch Initia			