\square

Solomon Islands National Form Six School Certificate

 2019
CHEMISTRY QUESTION AND ANSWER BOOKLET

TUESDAY $12^{\text {th }}$ NOVEMBER 2:00 PM

TIME: 3 Hours Plus 10 Minutes Reading Time.

INSTRUCTION

1. This Exam Paper consists of TWO
(2) sections. ATTEMPT ALL QUESTIONS. MARKS TIME

SECTION A: Multiple Choice Questions
SECTION B: Q21: Atomic Structure and Bonding Q22: Quantitative Chemistry Q23: Organic Chemistry
Q24: More Organic Chemistry
Q25: Inorganic Chemistry
Q26: Oxidation and Reduction
Q27: Principle of Physical Chemistry TOTAL:

40
25
31241819

27
16
200

36 minutes
21 minutes
23 minutes
23 minutes
17 minutes
18 minutes
18 minutes
24 minutes
180 minutes
2. Write your Student Personal Identification Number (SPIN) on the top right hand corner of this page and at the top of the back-flap on the last page at the end of this booklet.
3. Write all answers to the Multiple Choice Questions on the answer sheet on the back-flap on the last page.
4. In SECTION B, write the answers to the questions in the spaces provided in this booklet.

NOTE: A copy of the Periodic Table of the Elements - Sheet should be provided and it is at the back of this booklet.
The symbol M is used for molar mass.
For example, $\mathrm{M}(\mathrm{Mg})=24 \mathrm{~g} / \mathrm{mol}, \mathrm{M}\left(\mathrm{CO}_{2}\right)=44 \mathrm{~g} / \mathrm{mol}$ and $\mathrm{M}\left(\mathrm{NH}_{3}\right)=17 \mathrm{~g} / \mathrm{mol}$
5. Do NOT use correction fluid.
6. Mobile phones are NOT allowed in the Examination room.
7. Check that this booklet contains pages 2-39 in the correct order and none of these pages is blank. Page 37 has been left blank deliberately.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Answer all the questions in this section. Write the letter (A, B, C or D) of your best choice answer in the boxes on the back-flap provided at the back of this booklet. Each question is worth $\mathbf{2}$ marks.

1. The simplest alkyne is;
A. ethyne.
B. ethane.
C. ethylene.
D. propyne.
2. The melting and boiling points of hydrocarbons are determined by;
A. London forces.
B. hydrogen bonding.
C. ion-dipole attraction.
D. dipole-dipole attraction.
3. The structure of 2,3-dimethylheptane is;
A.

B.

C.

D.

4. How many isomers are possible for $\mathrm{C}_{5} \mathrm{H}_{12}$?
A. 1
B. 2
C. 3
D. 4
5. What general class of compounds is also known as olefins?
A. Alkanes
B. Alkenes
C. Alkynes
D. Aromatics
6. The compound below is;

A. an ester.
B. a ketone.
C. an aldehyde.
D. a carboxylic acid.
7. What functional group is MOSTLY present in the open-chain form of glucose?
A. Oxo
B. Ketone
C. Hydroxyl

D. Hydronium
8. The general formula of a carboxylic acid is;
A. R-O-R
B. $\mathrm{R}-\mathrm{CO}-\mathrm{R}$
C. $\mathrm{R}-\mathrm{CO}-\mathrm{OH}$
D. $\mathrm{R}-\mathrm{CO}-\mathrm{OR}$
9. The Alkyl halide below can be classified as \qquad alkyl halide.

A. a Tertiary
B. a Primary
C. a Secondary
D. an Intermediate
10. Oxides of active metals combine with acid to form;
A. oxygen gas.
B. hydrogen gas.
C. metal hydrides.
D. water and a salt.
11. What is the coefficient of $\mathrm{H}_{2} \mathrm{O}$ when the following equation is completed and balanced?

$$
\mathrm{Ba}_{(\mathrm{s})}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2}
$$

A. 1
B. 2
C. 3
D. 4
12. The ion with the SMALLEST diameter is;
A. Br^{-}
B. Cl^{-}
C. I^{-}
D. F^{-}
13. 2.86 grams of an oxide of copper is found to contain 2.54 grams of copper. Which of the following gives the formula of the copper oxide?
$\left[\right.$ Given $\left.\mathrm{M}(\mathrm{Cu})=64 \mathrm{gmol}^{-1}, \quad \mathrm{M}(\mathrm{O})=16 \mathrm{gmol}^{-1}\right]$
A. $\mathrm{Cu}_{2} \mathrm{O}$
B. CuO
C. CuO_{2}
D. $\mathrm{Cu}_{2} \mathrm{O}_{3}$
14. In the manufacture of methanol, hydrogen is reacted with carbon monoxide over a catalyst of zinc and chromium oxides as represented in the equilibrium reaction below.

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-128.4 \mathrm{kJmol}^{-1}
$$

Which of the following changes would favour a forward reaction?
A. Using a different catalyst.
B. Decreasing the total pressure.
C. Increasing the surface area of the catalyst.
D. Increasing the concentration of carbon monoxide.
15. When concentrated ammonia $\left(\mathrm{NH}_{3}\right)$ solution is added drop by drop to copper sulfate $\left(\mathrm{CuSO}_{4}\right)$ solution, a pale blue jelly-like precipitate forms. The chemical species that produces the pale blue precipitate is;
A. CuOH .
B. $\mathrm{Cu}(\mathrm{OH})_{2}$.
C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$.
D. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$.
16. In which of the following pairs does sulphur has the same oxidation number?
A. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$
B. $\mathrm{SO}_{2}, \mathrm{SO}_{3}$
C. $\mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{3}$
D. $\mathrm{SO}_{3}, \mathrm{SO}_{4}{ }^{2-}$
17. Aspirin (Mr. $180.159 \mathrm{~g} / \mathrm{mol}$) reacts with sodium hydroxide solution according to the equation below:

$$
\mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COOH}_{(\mathrm{s})}+\mathrm{NaOH}_{(\mathrm{aq)}} \longrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COONa}_{(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

A student took one aspirin tablet, dissolved it in 20 ml of warm methylated spirit, added phenolphthalein indicator, and titrated it against $0.09954 \mathrm{molL}^{-1}$ NaOH solution. 16.4 ml of NaOH was required to reach the end-point. What is the mass of aspirin in the tablet?
A. 5.94 grams
B. $\quad 0.97$ grams
C. 0.594 grams
D. 0.297 grams
18. Which of the following equations below represents a REDOX reaction?
A. $\quad \mathrm{NH}_{3(1)}+\mathrm{HCl}_{(\mathrm{g})}$
$\longrightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(1)}$
B. $\quad \mathrm{SO}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$
$\longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{I})}$
C. $2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NaCl}_{(\mathrm{g})}$
D. $\mathrm{HCOOH}_{(I)}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(I)} \longrightarrow \mathrm{HCOOCH}_{(I)}$
19. The molar mass $\left(M_{r}\right)$ of the protein haemoglobin is about 65,000 grams/mole. A molecule of haemoglobin contains 0.35% Fe by mass. How many iron atoms, Fe, are in a haemoglobin molecule?
[Given $A_{r}(F e)=56 \mathrm{gmol}^{-1}$]
A. 1
B. 2
C. 3
D. 4
20. Which of the following trend below is TRUE about the relationship between atomic radius and first ionization energy across Period 3 of the Periodic Table?

	Atomic Radius	First lonisation Energy
A	Decreases	Decreases
B	Increases	Increases
C	Increases	Decreases
D	Decreases	Increases

Section A:

Answer ALL Questions (21-27) in the spaces provided.
If you are unable to calculate a value in one question which you will need for your calculations in a later question, select an appropriate value and use it where needed.

QUESTION 21: ATOMIC STRUCTURE AND BONDING

A. Use the table below which shows the atomic number, mass number and number of neutrons of atoms C and D to answer questions (1-3) that follow.

Symbol	Atomic number	Mass number	Number of neutrons
${ }^{20} C$	(i)_	20	10
${ }^{10}$ D		40	(ii)_

1. Complete the above table by filling in the two empty spaces labeled (i) and (ii).
(i) \qquad (ii) \qquad
2. Write the electron configuration (arrangement) of;
(a) atom C:
(b) ion D :
3. Which one of the two atoms given in the table above (C or D) is chemically unreactive? Justify your answer.

Atom:

Justification: \qquad
B. Both methane $\left(\mathrm{CH}_{4}\right)$ and oxygen $\left(\mathrm{O}_{2}\right)$ are covalent molecules.

1. Draw the electron dot diagram (Lewis structure) for;
(a) Methane, CH_{4}
(b) Oxygen, O_{2}

(2 marks)
2. Name the molecular shape of;
(a) methane, CH_{4} : \qquad
(b) oxygen, O_{2} : \qquad
(2 marks)
3. Methane and oxygen are non-polar molecules but the bonding within each molecule differs. Clearly explain this difference.
\qquad
\qquad
\qquad
\qquad
(2 marks)
C. Complete the table below by filling in the five empty spaces labeled (i) to (iv). A description of sodium chloride is given as an example.

Substance	Type of solid	A property	Reason for that property
Sodium chloride	Ionic solid	Conducts electricity in the molten state	Ions are free to move and can migrate to the appropriate electrode.
Aluminium	(i)	(ii)	Can be hammered or rolled into thin sheets due to the presence of delocalized electrons in the metallic lattice/structure.
Carbon dioxide	(iii)	Low melting point and boiling point	(iv)

D. The table below gives the first ionization energies for some of group 1 and group 8 elements.

Group	Element	Atomic number	First ionization energy $\left(\mathbf{k J ~ m o l}^{-1}\right)$
1	Lithium	3	526
	Sodium	11	502
	Potassium	19	425
	Helium	2	2379
	Argon	18	1527

1. Clearly state the difference in the first ionization energies of the two groups of elements.
\qquad
(1 mark)
2. Explain why the FIRST ionization energy for the elements decreases down the group.
\qquad
\qquad
\qquad
(2 marks)
E. The electronic structures of sodium (proton number 11) and fluorine (proton number 9) are shown in figure below.

These two elements react together to form an ionic compound, Sodium Fluoride.

1. What is the formula of Sodium Fluoride?
\qquad
2. Look carefully at the structures of the Sodium and Fluoride ions.
a. What is similar between these ions?
\qquad
(1 mark)
b. List TWO (2) differences between these ions.
(i) \qquad
(ii) \qquad
3. Would you expect Sodium Fluoride to conduct electricity? Explain.
(2 marks)

Q21

A. During the preparation of a standard solution of Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, a student obtains the following results:

Mass of beaker $\quad=128.45 \mathrm{~g}$
Mass of beaker and anhydrous sodium carbonate $=131.10 \mathrm{~g}$ She dissolves this Sodium carbonate in enough water to make exactly 100 ml of standard solution. (NB: Ar of $N a=23 \mathrm{~g} / \mathrm{mol}$; Ar of $C=12 \mathrm{~g} / \mathrm{mol}$; and Ar of $=16 \mathrm{~g} / \mathrm{mol}$)

1. Calculate the concentration of the solution she prepared in:
a. grams per litre $\left(\mathrm{g} \mathrm{L}^{-1}\right)$

(2 marks)
b. Moles per litre $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$
2. She titrated this standard solution against a solution of hydrochloric acid and found that 20 ml of the sodium carbonate solution was exactly neutralised by 5 ml of the acid.

Use the above information to answer questions ($a-d$) that follow.
a. What piece of apparatus would she have used to measure the amount of acid necessary to neutralise the standard solution?
(1 mark)
b. Describe how she would have known when the two solutions were neutralised.
\qquad
\qquad
\qquad
\qquad
(2 marks)
c. Write an equation for the reaction, which occurred between hydrochloric acid and sodium carbonate.
\qquad
\qquad
\qquad
(2 marks)
d. Calculate the concentration of the hydrochloric acid solution in mol Lis
\square
(3 marks)
B. Methane burns in air according to the incomplete equation below:

1. Write the balanced equation for the reaction.
\qquad
\qquad
(1 mark)
2. What mass of Carbon dioxide is obtained from 80 g of Methane?

3. What mass of Oxygen reacts with 80 g of Methane?

(2 marks)
4. What mass of Water is obtained from 200 g of Methane?

(2 marks)

The figure below shows a model of a molecule of a solvent used in the drycleaning of clothes.

1. What is the molecular formula of the solvent?
\qquad
\square
(1 mark)
2. What is the relative molecular mass of the solvent?
\square
3. A component of petrol was analysed as follows:
84.2\% Carbon; 15.8\% Hydrogen
a. Calculate the empirical formula of this component.
b. If the molar mass of this component of petrol is $114 \mathrm{~g} \mathrm{~mol}^{-1}$, calculate its molecular formula.

> (2 marks)
c. Use the information below to answer questions (1-3) that follow.

The reaction between potassium hydroxide and sulphuric acid is represented by the equation:

$$
2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

20 ml of a $0.3 \mathrm{~mol} \mathrm{l}^{-1}$ potassium hydroxide solution is neutralised by 15 ml of sulphuric acid.

1. Calculate the amount of potassium hydroxide in the 20 ml sample.

(2 marks)
2. What amount of sulphuric acid is required to completely neutralise the potassium hydroxide?
(1 mark)
3. Calculate the concentration of the sulphuric acid solution.
\square
(2 marks)

A. Write the structural formulae of the products that form when ethylene reacts with each of the following substances by an addition reaction. (Assume that needed catalysts or other conditions are provided.)
4. Br_{2}
5. HBr
6. $\mathrm{H}_{2} \mathrm{O}$ (in acid)

(2 marks)
7. The hydrogenation of Aldehydes will produce an alcohol. In the presence of hydrogen molecule, with the right conditions of heat, pressure and catalyst, an alcohol is produced. Complete the following reactions and name the alcohol that is produced.

a. Product Formulae/Structure: -

b. Name of Product:
8. Write the IUPAC names of the following compounds.
CH_{3}
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CHCH}_{3}$ \qquad (1 mark)
b. $\mathrm{CH}_{3} \mathrm{CH} \quad \mathrm{CHCH}_{2} \mathrm{CH}_{3}$ \qquad (1 mark)
c. $\mathrm{CH}_{3} \mathrm{CHCH} \mathrm{CH}_{3} \mathrm{CHEH}_{3}$ \qquad (1 mark)
9. Calculate the percentage composition by mass of each element in a potassium ferricyanide, $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ molecule.
(NB: Ar of $K=39.0 \mathrm{~g} / \mathrm{mol}$; Ar of $\mathrm{Fe}=56.0 \mathrm{~g} / \mathrm{mol}$; Ar of $\mathrm{C}=12.0 \mathrm{~g} / \mathrm{mol}$ and Ar of $N=14.0 \mathrm{~g} / \mathrm{mol}$)
B. Alkanes are saturated hydrocarbons which can be obtained from crude oil. Pentane is an example of an alkane. A molecule of pentane contains five carbon atoms.
10. (a) State the meaning of the following terms below;
(i) saturated:
(ii) hydrocarbon:
(2 marks)
(b) Give the general formula for the alkanes.
11. Pentane burns completely in oxygen.
(a) Write an equation for this reaction.
\qquad
(1 mark)
(b) State how carbon dioxide may affect the environment.
\qquad
(1 mark)
(c) Give the name of the gas, which forms when carbon dioxide burns incompletely in air.
(1 mark)
C. Decide whether the members of each pair are identical, are isomers, or are unrelated.

(1 mark)
12. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$ and

(1 mark)
13. $\stackrel{\text { O }}{\mathrm{O}} \mathrm{C}-\mathrm{CH}_{3}-$

(1 mark)
A. From the table below answer questions $(1-3)$ that follow.
14. In the table below complete the spaces (a, b, c and d) by working out the molecular formula and relative molecular mass ($\mathbf{M}_{\mathbf{r}}$) for each alcohol.

ALCOHOL	MOLECULAR FORMULA	$\mathbf{M}_{\mathbf{r}}$	BOILING POINT (${ }^{\circ} \mathrm{C}$)
methanol	$\mathrm{CH}_{3} \mathrm{OH}$	$32 \mathrm{~g} / \mathrm{mol}$	65
ethanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	(a)	78
propan-1-ol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	(b)	97
butan-1-ol	$\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$74 \mathrm{~g} / \mathrm{mol}$	$?$
pentan-1-ol	(c)	$88 \mathrm{~g} / \mathrm{mol}$	138
hexan-1-ol	(d)	$102 \mathrm{~g} / \mathrm{mol}$	158

(4 marks)
2. Plot a graph of boiling point (vertical axis) against the molecular mass (horizontal axis) of each alcohol using the grid provided on the next page. Use your graph to find the boiling point of butan-1-ol in the table above. (You can use a scale of 5 for both axes).

(3 marks)
3. Suggest a reason why the boiling point of propan-2-ol is only $82^{\circ} \mathrm{C}$ compared to that of propan-1-ol.
\qquad
4. Classify the alcohol below as either $1^{\circ}, 2^{\circ}$, or 3° :
a. 3,3-dimethylpentan-2-ol
(1 mark)
5. Name the functional group present in each of the following structures.

d. $\mathrm{CH}_{3} \mathrm{OCCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ \qquad (1 mark)
B. The cellulose that is present in plant matter cannot be directly fermented to produce bioethanol. The cellulose polymer must first be broken down into its constituent monomers. A section of cellulose polymer is shown below.

1. What is the name of the monomer from which cellulose is formed?
\qquad
(1 mark)
2. Complete the chemical equation to show the formation of ethanol by fermentation.

3. Ethanol can be manufactured directly from ethene gas in the presence of a catalyst. Write the equation for this reaction.
(1 mark)
C. An incomplete chemical equation with two unknown coefficients I and II shows the hydrolysis of a triglyceride is shown below.

The fatty acid produced in the above reaction is completely oxidized to produce carbon dioxide and water.

Write the equation for the oxidation reaction.

Q24

Periodic trends of oxides and chlorides of group 3 elements can be classified according to its type - basic, amphoteric and acidic.
A. 1. Complete the electron configuration of the Al^{+}ion.
$1 s^{2}$
(1 mark)
2. State the meaning of the term amphoteric.
(1 mark)
3. State and explain the general basicity and acidity trend of the Period 3 Oxides of sodium to chlorine.

Trend \qquad
(1 mark)

Explanation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(3 marks)
B. Ammonium sulfate reacts with sodium hydroxide to form ammonia, sodium sulfate and water as shown in the equation below.
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{~s})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

1. A 3.14 g sample of ammonium sulfate reacted completely with $39.30 \mathrm{~cm}^{3}$ of a sodium hydroxide solution.
(i) Calculate the amount, in moles, of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ in 3.14 g of ammonium sulfate.

(ii) Calculate the amount, in moles, of sodium hydroxide, which reacted.

(2 marks)
(iii) Calculate the concentration, in $\mathrm{mol} / \mathrm{L}$, of the sodium hydroxide solution used.

2. SO_{2} and SO_{3} dissolve in water to give weak sulphurous acid, and the very strong sulphuric acid respectively.

In the space below write the chemical equations for the two reactions.
(i) Equation 1: $\mathrm{SO}_{2}+$ Water
\qquad
(ii) Equation 2: $\mathrm{SO}_{3}+$ Water
(1 mark)
3. Glauber's salt is a form of hydrated sodium sulfate that contains 44.1% by mass of sodium sulfate. Hydrated sodium sulfate can be represented by the formula $\mathrm{Na}_{2} \mathrm{SO}_{4} . \boldsymbol{x} \mathrm{H}_{2} \mathrm{O}$ where \boldsymbol{x} is an integer. Calculate the value of x.
(NB: Ar of $\mathrm{Na}=23.0 \mathrm{~g} / \mathrm{mol}$; Ar of $S=32.0 \mathrm{~g} / \mathrm{mol}$; Ar of $O=16.0 \mathrm{~g} / \mathrm{mol}$ and Ar of $\mathrm{H}=1.0 \mathrm{~g} / \mathrm{mol})$.
(2 marks)
C. Aluminum Chloride reacts rapidly when moistened with water (see below).

$$
\mathrm{AlCl}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{HCl}_{(\mathrm{aq})}
$$

1. Balance the equation above by filling in the coefficients in front of respective formulae.

2. Explain why ionic chlorides react differently from covalent chlorides.
\qquad

A. Methanol is produced by the catalytic conversion of a mixture of hydrogen and carbon monoxide gases at 520 K and a pressure of 50 to 100 atmospheres.
3. The graph below shows how the concentration of methanol changes with time at three different temperatures. (The pressure is the same at each temperature).

a) Is this reaction exothermic or endothermic? Justify your answer.
(i) Name of the reaction:
(ii) Justify:
\qquad
(2 marks)
b) State why a moderately high temperature of 520 K is used although the equilibrium concentration of methanol is greater at a lower temperature.
\qquad
\qquad
(2 marks)
c) Explain why, at a given temperature, the use of high pressure results in a greater equilibrium concentration of methanol.
\qquad
\qquad
\qquad
(2 marks)
d) Define Dynamic equilibrium.
\qquad
\qquad
(1 mark)
4. A catalyst consisting of a mixture of copper, zinc and aluminium is used to increase the rate of this reaction. Explain how a catalyst can increase reaction rate.
\qquad
\qquad
\qquad
(2 marks)
B. Two experiments were conducted to investigate various factors that affect the rate of reaction between calcium carbonate and dilute hydrochloric acid.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

The two experiments are summarized in the diagrams below.

Experiment 1

Experiment 2

1. Describe how the reaction rate can be measured in the experiments on page 30.
\qquad
\qquad
\qquad
\qquad
(2 marks)
2. Identify TWO (2) rate-determining factors that are investigated in experiment 1 on page 30 .
\qquad
\qquad
\qquad
\qquad
(2 marks)
3. In experiment 2 , will the rate of reaction be faster in beaker A or beaker B on page 30?
\qquad
\qquad
\qquad
\qquad
(2 marks)
4. Why is this statement incorrect?
'Collision theory states that all collisions between reactant particles will result in a chemical reaction.'
\qquad
\qquad
\qquad
(2 marks)
C. $\quad 0.415 \mathrm{~g}$ of a pure acid, $\mathrm{H}_{2} \mathrm{X}_{(\mathrm{s})}$, is added to exactly 100 ml of $0.105 \mathrm{M} \mathrm{NaOH}_{\text {(aq) }}$. A reaction occurs according to the equation:

$$
\mathrm{H}_{2} \mathrm{X}_{(\mathrm{s})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Na}_{2} \mathrm{X}_{(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

NaOH is in excess. This excess NaOH requires 25.21 ml of $0.197 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ for neutralisation.
i. Calculate the amount, in mol, of NaOH that reacts with the acid $\mathrm{H}_{2} \mathrm{X}$.
\square
(3 marks)
ii. Calculate the molar mass, in $\mathrm{g} \mathrm{mol}^{-1}$, of the acid $\mathrm{H}_{2} \mathrm{X}$.
D. The equation below represents an equilibrium process between dinitrogen tetrafluoride (N2F4) and nitrogen difluoride (NF2) in a closed system.

$$
N F g \Leftrightarrow N F g \quad \Delta r H^{\circ}=38.5 \mathrm{~kJ}
$$

1. Define what a closed system is.
\qquad
(1 mark)
2. Predict the changes in the following equilibrium reactions:
(i) The reaction mixture is heated at constant volume.
\qquad
\qquad
(2 marks)
(ii) The pressure on the reacting mixture is decreased at constant temperature.
\qquad
\qquad
(2 marks)

3. The lithium button cell, used to power watches and calculators, is a primary cell containing lithium metal. The lithium ion cell is a secondary cell that is used to power laptop computers.
a. State ONE (1) difference between a primary and secondary cell.
\qquad
(1 mark)
b. By referring to information provided above, give ONE (1) reason why lithium is used as a reactant in these galvanic cells.
\qquad
(1 mark)
4. Determine the oxidation state of each atom in the NO_{2} compound ion.
\qquad
\qquad
(2 marks)
5. Identify the species being oxidized and reduced in the reaction below:

$$
\mathrm{Cr}^{+}+\mathrm{Sn}^{4+} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Sn}^{2+}
$$

Oxidized Species: \qquad
Reduced Species: \qquad (2 marks)
4. Write the balanced half reactions of the following chemical reactions:
a. $\mathrm{CO}_{2}+2 \mathrm{NH}_{2} \mathrm{OH} \rightarrow \mathrm{CO}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ in basic solution
(i) Oxidation half Equation:
(ii) Reduction half Equation:
b. Using the above half equations, balance the overall REDOX equation.
\qquad
(2 marks)
5. This question requires you to refer to the information in the table below.

	Standard electrode potential E^{0} in volts
$\mathrm{HOBr}_{(\mathrm{aq})}+\mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Br}^{-}{ }_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	+1.33
$2 \mathrm{HOBr}_{(\text {aq) }}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Br}_{2(1)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$	+1.60

a. Explain why the reaction between chlorine gas and bromide ions is NOT predicted to occur to any significant extent under standard conditions.

$$
\mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}^{+}+\mathrm{HOBr}_{(\mathrm{aq})}
$$

\qquad
\qquad
\qquad
\qquad
(2 marks)
b. Differentiate between Oxidation and Reduction.
(i) Oxidation:
\qquad
(ii) Reduction:
(1 mark)

This page has been left blank deliberately

Student Personal Identification Number

SINF6 - CHEMISTRY 2019

SECTION A: Multiple Choice		SECTION	MARK	MARKER	CHECKER
1.$2 .$		A	40		
		B. 21	25		
		B. 22	31		
4.	14.	B.23.	24		
5.	15.	B. 24	18		
6.	16.	B. 25	19		
7.	17.	B. 26	27		
		B. 27	16		
10.	20.	TOTAL MARK	200		
		Marker Ini	hecker ls		

1	Periodic Table of the Elements																18
$\left(\begin{array}{ll} 1 & \\ & \mathrm{H} \\ \text { Hydrogen } \\ 1.01 \end{array}\right)$	2											13	14	15	16	17	$\underbrace{\text { He }}_{\substack{2 \\ \text { Helium } \\ 4.00}}$
3	4 Peryliun 9.01											${ }^{5} \underset{\substack{\text { Borme } \\ 10.81}}{\mathbf{B}}$		${ }_{\substack{7 \\ \text { Mitrojen } \\ 14.01}}$	${ }^{8} \mathbf{O}$	$\begin{aligned} & 9 \\ & \text { Flucrine } \\ & 19.00 \end{aligned}$	$\underset{\substack{10 \\ \text { Nem } \\ \text { Nen } \\ 20.18}}{ }$
11 Sodium 22.99	$\mathbf{M g}_{\substack{\text { Maynesium } \\ 24.31}}^{12}$	3	4	5	6	7	8	9	10	11	12	13 AI Aluninum 26.98	${ }_{\substack{14 \\ \text { Silikon } \\ 28.09}}$	${ }_{\substack{15 \\ \text { Phosphons } \\ 30.97}}^{\mathrm{P}}$	${ }_{\substack{16 \\ \text { Sulfur } \\ 32.06}}$	17 CHorne 35.45	${ }_{\substack{18 \\ \mathbf{A r} \\ \text { Argon } \\ 39.95}}$
${ }_{\substack{19 \\ \text { Potassium } \\ 39.10}}^{\mathbf{K}}$	${ }_{\substack{20 \\ \text { Calium } \\ 40.08}}$	21 Scandium 44.96	22 Ttariun 47.88	${ }_{\substack{23 \\ \text { Vanaditm } \\ 50.94}}^{\mathrm{V}}$	24 Cromiun 51.99	25 Mn Manganese 54.94	${ }_{\substack{26 \\ \text { Fe } \\ \text { Iron } \\ 55.85}}$	27 Cobat 58.93	28 Mided 58.69	29 Copper 63.55	${\underset{y}{2 n n}}_{\substack{30 \\ 65.38}}$	31 Gallinm 69.72	$\underset{\substack{\text { Gemariun } \\ 72.63}}{32}$	33 As Arseric 74.92		35 Bromine 79.90	${ }_{\substack{36 \\ \text { Krypten } \\ \text { Kr } \\ 84.80}}$
37 Rb hutidun 85.47	${ }_{\substack{\text { SHEntium } \\ 87.62}}^{\mathbf{S H}^{28}}$	${ }^{39} \mathbf{Y}$	40 Z̄rconium 91.22	41	42 Mo Mdybdenum 95.95	43 Tc Technetium 98.91	44 Ru Autheriun 101.07	45 Rhodium 102.91	46 Paladium 106.42	47	48 Gdmium 112.41		${ }_{\substack{50 \\ T n \\ 118.71}}$	$\mathbf{S b b}_{\substack{\text { Antimany } \\ 121.76}}^{51}$	Te	$\underbrace{}_{\substack{53 \\ \text { lodire } \\ 126.90}}$	$\underset{\substack{54 \\ \text { Xemen } \\ 131.29}}{ }$
55 Cesinm 132.91	$\stackrel{56}{\text { Ba }} \begin{gathered} \text { Barium } \\ 137.33 \end{gathered}$	$57-71$ Lanthanides	72 Hánium 178.49	73 Ta Tantalum 180.95	74 Tungten 183.85	${ }_{\substack{75 \\ \text { Renenium } \\ 186.21}}$	76 Osminn 190.23	$\prod_{\substack{77 \\ \text { lidimm } \\ 192.22}}$	${ }_{\substack{\text { Pt } \\ \text { Platimum } \\ 195.08}}$	79 Au Gold 196.97	80	$\prod_{\substack{\text { Thalium } \\ 204.38}}$	$\underbrace{}_{\substack{82 \\ \text { Lead } \\ 207.20}}$		$\stackrel{80}{84}_{\substack{\text { Pobrium } \\ \text { Pobe } \\[208.98]}}$	${ }_{\substack{85 \\ \text { kttatine } \\ 209.98}}$	$\begin{aligned} & 86 \\ & \mathbf{R n}^{86} \\ & \text { Radsn } \\ & 222.02 \end{aligned}$
	88 Ra Radium 226.03	$\begin{array}{r} 89-103 \\ \text { Actirides } \end{array}$	104 Rf Intherindin [261]	105 Dutnitm [262]	$\int_{\substack{\text { seabsigimm } \\[266]}}^{106}$	107 Bchrim [264]	 Hassium [269]	109 Neitnerium [278]	110 Ds Damsaitum [281]	111 Roertgenium [280]	112 Copemixium [285]	113	$\underset{\substack{\text { Heroviam } \\[289]}}{114}{ }^{2}$	115 Mc Msscovinm [289]	$\underset{\substack{116 \\ \text { Livernarivm } \\[293]}}{ }$	${ }^{117} \mathrm{Ts}$	

