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CHAPTER 1: MEASUREMENTS 

1.1  MEASUREMENTS 

Vernier calipers and micrometres are devices that are used in measurements. A Vernier 

caliper is a device which consists of a ruler and a Vernier scale attached to it. A 

micrometer (or a micrometer screw gauge) is a device which consists of a screw 

measuring system. These devices are widely used in fields such as physics, engineering, 

woodworking, metalworking, medicine and various other fields.  

1.1.10 THE VERNIER CALIPER 

A Vernier caliper is a tool used to measure small distances. Vernier calipers have two 

sets of jaws that allow you to measure both the inside and outside diameter of circular 

objects. 

 

 

 

The problem with using a Vernier caliper to measure something is that it is not 

straightforward like a standard ruler. A Vernier caliper is read by using two separate 

scales - a main (fixed) scale and a Vernier (movable) scale. The trick to reading a Vernier 

caliper is learning to read the scales in conjunction with one another. 

 

Figure 1: Vernier caliper for measuring the external size of an object 

 

For inside diameters 
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In the case of the caliper shown in Fig. 1, the smallest measurement on the main scale is 
0.1 cm or 1 mm. The Vernier scale can read to 0.05 mm. So using both scales, the width 
can be read to the nearest 0.005 cm (or 0.05 mm). 
 

To measure the width, you read the top and bottom scale as follows:  
 

1. Find where the 0 mark of the Vernier scale lines up on the main scale. In this 
case, it is between 1.1 and 1.2 cm. So, the first reading is 1.1 cm. 

 

2. Find the mark on the Vernier scale that most closely lines up with one of the 
marks on the main scale. Here, 6.0 and 7.0 are very close, but 6.5 lines up best 
with one of the marks on the main scale. This value is the number of hundredths 
of centimetres (or tenths of millimetres). So, the second reading is 0.065 cm. 

 

3. Add the two values together to get the total reading: 1.1 cm + 0.065 cm = 1.165 
cm 

 

Example 1 

 

Example 2 

 

1.1.11 THE MICROMETER 

The micrometer is a precision measuring instrument, used by engineers. Each revolution 

of the ratchet moves the spindle face 0.5 mm towards the anvil face.  



CHAPTER 1: MEASUREMENTS 

3 
 

The object to be measured is placed between the anvil face and the spindle face. The 

ratchet is turned clockwise until the object is ‘trapped’ between these two surfaces and 

the ratchet makes a ‘clicking’ noise. This means that the ratchet cannot be tightened 

anymore and the measurement can be read. 

 

http://www.technologystudent.com/equip1/microm1.htm 

Example 1 

Using the first example seen below: 
 
 

 
 
 

SLEEVE READS FULL mm = 12.00 
SLEEVE READS ½ mm = 0.50 
THIMBLE READS =  0.16 
TOTAL MEASUREMENT = 12.66 mm 

 

1. Read the scale on the sleeve. The example clearly shows 12 mm divisions. 

2. Still reading the scale on the sleeve, a further ½ mm (0.5) measurement can be seen 
on the bottom half of the scale. The measurement now reads 12.5 mm. 

3. Finally, the thimble scale shows 16 full divisions (these are hundredths of an mm). 

The final measurement is 12.5 mm + 0.16 mm = 12.66 mm.
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1.1.12 UNCERTAINTY IN MEASUREMENTS 

Uncertainty refers to the fact that a measurement is only an estimation of the true 

value. There are three types of uncertainty: 

I. Random uncertainty 

II. Systematic uncertainty 

III. Parallax error 

Random Uncertainty: 

A random uncertainty is one for which the measurement is just as likely to be larger or 

smaller than the true value. 

Example: Students using a stop watch to measure the time for a pendulum to complete 

ten swings. Assuming the student has a good reaction time, the measurement may be 

slightly high in some trials and slightly low in others. 

Sources of random errors include: 

 The observer being less than perfect 

 The readability of the equipment 

 External effects on the observed item 

Random uncertainty can be minimized by taking the average of several readings. 

Systematic Uncertainty: 

This type of error results from a consistent problem with a measuring device or the person 

using it.  

Example: Using a metre rule with loose ends, a dial instrument with needle that is not 

properly zeroed, or a human reaction time that is always either too late or too early. 

Sources of systematic errors include: 

 The observer being less than perfect in the same way every time 
 An instrument with a zero offset error 
 An instrument that is improperly calibrated 

Parallax error: 

This is the apparent shift in the object’s position when the observers position changes 
To overcome parallax error when reading instruments, you should view the dial and 
scale at a direct angle.  



CHAPTER 1: MEASUREMENTS 

5 
 

 

http://www.measuring-tools.biz/measuring-instruments/micrometer-parallax-error.html 

1.1.13 Significant Figures 

Some basic rules about significant figures include: 

All figures other than zero are significant. 

Example: 3.67 has 3 significant figures 

All zeros between two non-zeros are significant. 

Example: 3005 has 4 significant figures 

2.3006 has 5 significant figures 

Zeros placed to the right of a non-zero digit after decimal points are significant. 

Example: 3.50 has 3 significant figures 

Zeros used to space a decimal point are not significant. In scientific notation, powers of 10 

have no significance. 

Example: (i) 0.036 has 2 s.f. (ii) 5.01 × 106 has 3 s.f. 

Absolute Uncertainty (Absolute Error) 

The absolute uncertainty (or absolute error) is the size of the range of values in which 

the "true value" of the measurement probably lies. If a measurement is given as 25.4  
0.1 cm, the absolute uncertainty is 0.1 cm.  
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Percentage Uncertainty (Relative Error) 

Percentage uncertainty is the ratio of the absolute uncertainty of a measurement to the 
best estimate. It expresses the relative size of the uncertainty of a measurement (its 
precision). 

Percentage uncertainty = %100
valuetheofestimatebest

yUncertaintAbsolute
 

For example, the measurement 35.4  0.2 cm has a relative uncertainty of: 

Percentage uncertainty = %6.0%100006.0%100
4.35

2.0


cm

cm
 

1.1.14 UNCERTAINTY CALCULATIONS 

Addition and Subtraction 

When adding or subtracting two measurements which have uncertainties, the absolute 

uncertainties should be added together. 

Example 1 
A student takes two measurements which were obtained using a meter rule calibrated 
in millimetres and wishes to add them. 
 1st Measurement: 20.4 ± 0.5 mm 

 2nd Measurement: 32.3 ± 0.5 mm 

Therefore, adding them: [20.4 ± 0.5mm] + [32.3 ± 0.5 mm] 

    [20.4 + 32.3]    [0.5 + 0.5] mm 

52.7 ± 1.0 mm 
 

Multiplication and Division 

When multiplying or dividing two measurements which have uncertainties, the percentage 

uncertainties should be added together. 

1. the absolute uncertainties is converted to percentage uncertainties 
2. These are then added together 
3. The final step involves converting the % uncertainty back to absolute uncertainty of 

the final answer. 
4. Rounding off the absolute uncertainty is done so that the least significant digit in the 

uncertainty will affect the least significant digit in the answer. 
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Example 2 

A piece of paper is measured to be 5.63 ± 0.15 mm wide and 64.2 ± 0.7 mm long. What is the 

area of this piece of paper? 

Area  =  width × length 

 = [5.63 ± 0.15 mm] × [64.2 ± 0.7 mm] 

 

Therefore, Area = [5.63 ± 2.66% mm] × [64.2 ± 1.09%] 

   = [5.63 × 64.2]    ±    [2.66% + 1.09%] 

   = 361.446 ± 3.75%   mm2 

Converting % back to absolute :    
100

75.3
 × 361.446 = 13.55    

Area = 361.446 ± 13.55  mm2 

So, rounding answer to 3 significant digits: Area = 361  ±  14  mm2 

1.1.15 EXERCISE 

1. Given below are five measurements (in cm) of length taken during the performance of a 
Form 5 Physics experiment. 

 
5.2, 5.4, 5.5, 5.3, 5.4 

 The length of its absolute uncertainty is best represented by 
A. 5.36 ± 0.14 
B. 5.36 ± 0.16 
C. 5.4 ± 0.1 
D. 5.4 ± 0.2 

 
2. An area of 0.4 m2 is the same as 

A. 40 000 cm2 B. 4 000 cm2 C. 400 cm2 D. 0.0004 cm2 
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3. A student used a vernier caliper to measure the diameter of a wooden cylinder. The 
diagram shows an enlargement of the caliper scales. What reading was recorded? 

 

A     2.40 cm              B        1.64 cm                 C        0.62 cm              D       0.42 cm 

 
4. The diagram shows the barrel (S) and the rotating thimble (T) of a micrometre screw 

gauge. 

 

The reading shown above is 
 

A     2.20 mm       B        2.23 mm            C        2.25 mm         D       2.28 mm 
 

5. The diagram shows a micrometre. What is the reading shown? 
 

            
A     5.74 mm            B        6.l4 mm                 C        6.74 mm            D       7.14 mm 

 
6. A length of copper pipe, of uniform cross‐section and several metres long, carries water 

to a tap. Which instruments are used to take measurements to calculate accurately the 
volume of copper in the pipe? 

A. calipers and micrometre 
B. micrometre and rule 
C. rule and tape 
D. tape and calipers 

 

7. The diameter of a ball bearing was measured as accurately as possible using the 

following instruments: metre rule, vernier calipers and a micrometre.  

The table below shows the readings obtained. Complete the table to show which 

instrument produced each reading. 

 
Diameter 

 
Instrument used 

 
7.12mm 

 

 
7.0 cm 

 

 
7.1mm 
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Give the name of the instrument most suitable for measuring   

1. the diameter of a wire,    

2. the volume of a small stone,    

3. The diameter of a soft drinks can.    

 

8. Which of the following represents the preferred accuracy in the sum 

12.4 + 11 + 63.37  + 4.2 cm ? 

A. 90.97  B. 91   C. 95.0  D. 95 

9. Convert the following to relative uncertainties: 
 

a.   2.70 ± 0.05 cm                                       b.  12.02 ± 0.08 cm 
 
10. Convert the following to absolute uncertainties: 
 

a.   3.5 cm ± 10 %                                  b.  16 s ± 8 % 
 
11. Complete the following, determining the appropriate uncertainty: 
 

a. (2.70 ± 0.05 cm) + (12.02 ± 0.08 cm) 
  

b. (12.70 ±0.05 cm) − (12.02 ± 0.08 cm) 
 

c. (2.70 ± 0.05 cm) + (3.5 cm ± 10 %) 
 
12. Complete the following, determining the appropriate uncertainty: 
 

a. (2.70 ± 0.05 cm) × (12.02 ± 0.08 cm) 
b. (12.02 ± 0.08 cm) ÷ (16 s ± 8 %) 
c. (3.5 cm ± 10 %) × (2.70 ± 0.05 cm) ÷ (16 s ± 8 %) 
 
 

1.2 RELATIONSHIPS 

One of the most important mathematical operations in physics is finding the relationship 
between variables. Through the study of these relationships, we can know how a change in 
one variable affects another variable, thus enabling us to make predictions and conclusions 
easily. 
 
 
1.2.10 RELATIONSHIPS FROM NON LINEAR GRAPHS 

It is easy to get a relationship from experimental data which gives us a linear (straight line) 

graph – it is  Y = m X + C (m is the gradient and C is the Y intercept) 



CHAPTER 1: MEASUREMENTS 

10 
 

There are situations where the graphical data obtained from a practical investigation is 

nonlinear – it comes out as a curve. Typically we might see curves like these: 

 

 

                  

 

 

                 

A “power of” relationship     A “root of” relationship 

 Y = k X2        Y = k x  

When the relationship between two variables gives a curved graph the variables are changed 
by squaring until the graph becomes linear. When a linear graph is obtained, the relationship 
is more clearly seen. 
Example 1  
 

Distance [m] 0.0 2.0 8.0 18.0 32.0 50.0 

Time [s] 0.0 1.0 2.0 3.0 4.0 5.0 

Time2 [s2] 0.0 1.0 4.0 9.0 16.0 25.0 

 
Plotting the graph of Distance vs. Time 

 
This gives a curve result. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

X 

Y 

X 

 Y 

It is difficult to see the 
relationship between the 
variables. Therefore, the time 
measurements are squared. A 
Graph of Distance Vs. Time2 is 
plotted to give a linear or straight 
line graph. 
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The graph between the changed 
variables is a straight line. This 
means that distance is 
proportional to time2. 
Taking the origin (0, 0) and the co-
ordinates (25 s2, 50 m) as the two 
points to calculate the slope: 

20.2
025

050 








 ms

x

y
m  

 

The mathematical relationship between distance and time is: [y = mx + c] 

Distance = 2.0 x time2   or  

d = 2.0t2  

1.2.11 DIRECT AND INVERSE SQUARE RELATIONSHIPS 

If a direct square relationship exists between two variables, then each quantity varies with 

direct proportion with respect to the square of the other, i.e. if a variable increases by an 

amount ‘n’ then the variable that it is directly proportional to increases by an amount ‘n2’ (n 

squared)  

         A = kB2 

Basically, if B "DOUBLES" then A "QUADRUPLES", due to the square. If B "triples" then A 

increases by a factor of NINE. 

Example 1 

2

2

1
mvEk   

In the case of kinetic energy, we see that the kinetic energy is DIRECTLY related to the 

“square” of the velocity, when the mass is constant. 

If v  doubles, then Ek increases 4 times i.e. quadruples. 
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If an inverse square relationship exists between two variables, then each quantity varies with 

inverse proportion with respect to the square of the other, i.e. if a variable increases by an 

amount n then the variable that it is inversely proportional to decreases by an amount n2. 

A = 2B

k
 

For the inverse square" if B "DOUBLES", then A DECREASES by a factor of FOUR, or it is simply 
ONE FOURTH its original value. If B "TRIPLES", then A is ONE NINTH its original value. 
 
Example 2 

Given the equation  
r

mv
F

2

 ,  what relationship exists between each of the following?  

 
a.  F and r   b.  F and m   c.  F and v 
 

(a)   
r

k
F .  

r divides into (m x v2) to create F. If F goes up, and (m x v2) stays the same, then r must go 
down or decrease. There is an "inverse" relationship between r and F if (m x v2) remains 
unchanged.  
 

(b)   F      km . 
 
 If F decreases and goes down, and v2 and r remain unchanged m must also decrease linearly.  

(c)   F      
2v . 

F increases, v must also increase as well. But, because v is squared, it will increase as the 
"square" to F. 
 
Example 3 

2

21

r

mGm
F   

In the case of Newton’s Law of Gravitation, we see that if the force due to gravity DECREASES, 
the distance from Earth, r, must have INCREASED by a square factor. 
 
What will be the value of F if: 
 
(i) The distance, r, is doubled 
 

 
2

21

)2( r

mGm
F 

 


 
2

21

4r

mGm
F 

 


 
2

21

4

1

r

mGm
F 

  

Thus, F decreases by a factor of 4 i.e.  
F

4

1
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(ii) The mass m1 and m2 is doubled 
 

2

21 )2)(2(

r

mmG
F 

  
  

 
2

214
r

mGm
F 

  
 

Thus, F increases by s factor of 4 i.e. 4F 
 
(iii) Both the mass m1 and the distance r, are doubled 
 

2

21

)2(

)2(

r

mmG
F 

  
2

21

4

2

r

mGm
F 

            
2

21

2

1

r

mGm
F 

 

Thus, F decreases by a factor of 2, i.e.  
2

1
F 

 
1.2.22 EXERCISE 
 
1. A toy car of mass m moving with uniform acceleration a has a velocity v at 
displacement s from a fixed point as follows: 
 

s(m) 0.0 1.0 2.0 3.0 4.0 

v(m/s) 0.0 2.0 2.8 3.5 4.0 

 
(a) Sketch the graph of s against v 
(b) Calculate and tabulate the values of v2. 
(c) Plot a fully labelled graph of s versus v2. 
(d) What is the slope k of the graph in (c)? State the units of the slope. 
(e) State the expression relating s, k and v 
(f) Determine graphically the acceleration of the trolley. 
(g) What is the net force on the toy car of mass 1.5 kg? 
 
2. The period T of a simple pendulum varies with its length l as according to the     
formula: 
 

g

l
T 2 , where g is the gravitational field strength. 

 
 
 
 
              
 
 
 
                
 

 

l 

Simple pendulum 
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In a Lab experiment to determine g, the following results were obtained for the length of the 
pendulum l and the time for 20 oscillations: 
 

L (cm) 20 40 60 80 100 120 

t(20 sec) 18.0 25.4 31.1 35.9 40.1 44.0 

 
a) Calculate and tabulate the values for 

(i) L in m 
(ii) Period of the pendulum T 
(iii) T2 

b) Plot the graph of T2 (vertical axis) against l. 
c) Determine the size and units of slope of the graph in (b) 
d) Determine graphically the value of g. 

3. The kinetic energy of an object is given by the formula: 
2

2

1
. mvEK       

where, K.E = kinetic energy 
                 m = mass of the object 
                v = velocity of the object 
 

a) Sketch the graphs that best represents the relationship between K.E and v for the 
object 

b) The mass is now halved and the speed doubled. Calculate the new kinetic energy.  

1.3 VECTORS 

Many of the quantities with which we deal in Physics are vectors.  Sometimes we need to 
add a number of vectors together.  For example, calculating the resultant force acting on a car 
when several forces act on the car concurrently – the wind, friction, gravity and the force 
supplied by the engine.  Sometimes we need to subtract two vectors.  For example, 
calculating the change in velocity of a car as it goes around a bend in the road.  

When the need arises to add or subtract vector quantities, this proves to be easy only when 
the vector quantities act along the same straight line.  If the vectors act at an angle to each 
other we really need to draw a vector diagram to assist in solving the problem. 

1.3.10 VECTOR SUBTRACTION 

An important application of subtracting vectors is when you are dealing with velocity vectors. 
Vector subtraction is commonly used when calculating a change in a vector quantity. E.g., to 
find the change in velocity, ∆v, from an initial velocity of vi  to a final velocity of v f ,  then

  

if vvv   

CHANGE in VELOCITY = FINAL VELOCITY – INITIAL VELOCITY 
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Example 1 
A car is moving due East at 20 ms-1.  A short time later it is moving due North at 20 ms-1.  
Calculate the change in velocity of the car. 

if vvv   

This should really be written as: )( if vvv   

since that is how we draw the vector diagram.  We simply add the negative of the initial 
velocity to the final velocity 

 

           

                  

 

       

Using Pythagoras’ Theorem and basic trigonometry  

By Pythagoras’ Theorem, the magnitude of the resultant change in velocity of the car is:  

  
22 )20()20( R  =  28.3 m/s 

 and the direction can be found using basic trigonometry as follows:  

  







 

20

20
tan 1  =  45 0 

So, the change in velocity of the Car is 28.3 ms-1 at an angle of 45o West of North (N 450 W).  

Example 2 
A tennis ball thrown against a wall rebounds without loss in speed as shown. Calculate the 
magnitude and direction of the ball’s change in velocity. 
 

 
 

if vvv     )( if vvv   

 

  

 

N 
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           6 m/s     6 m/s                                    6 m/s                  6 m/s 
 
 
 
 
                                                              6 m/s        6 m/s 
 
  
 
                                                                     X  
using Pythagoras theorem: X2  =   62  +  62 = 36  +  36  
    X2  = 72 

    X   = 72  = 8.48 m/s 

 
 

1.3.11 VECTOR COMPONENTS 

Any vector can be resolved into a number of components and when these are added together 
they result in the original vector.

 

For example, look at vector, A 
given on the left, it is in northeast 
direction. In the figure, we see the 
X and Y component of this vector. 
In other words, addition of AX and 
AY gives us vector A. We benefit 
from trigonometry at this point. 
There are two simple equations 
which you can use and find the 
components of any given vector. 

Example 1 

 

All vectors can be divided into their components. Now we solve an example and see how we 
use this technique. 
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Example 2 
A force of 60 Newton is applied to a rope to pull a box across a horizontal surface at a 
constant velocity. The rope is at an angle of 300 above the horizontal. Find the vertical and 
horizontal component of this force. 

 
 
 
 
 
 
 
 
 
Horizontal Component of 

Force: Cos  = 
h

a
  Cos  = 

h

Fh  

 

   Cos 300 = 
60

hF
  Fh = (Cos 300) (60) = 52 N 

Vertical Component of Force: Sin  = 
h

o
  Sin  = 

h

Fv  

 

   Sin 300 = 
60

vF
  Fv = (Sin 300) (60) = 30 N 

 
1.3.12 ADDING NON PERPENDICULAR VECTORS 

When we add two or more vectors, the diagram we construct often results in a triangle. 

Therefore, it is possible to use trigonometric relationships and laws that hold for a triangle to 

solve for unknown sides or angles. For Non-Perpendicular Vectors, the Sine Rule and the 

Cosine Rule are the two basic tools one can use when analyzing triangles. 

SINE RULE:  
SinC

c

SinB

b

SinA

a
   

  

COSINE RULE: )2(222 abCosCbac      
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P 

6 9 
60° 

Example 1 

Two equal forces of 70 Newton act on a body at 600 to each other as shown on the diagram 

given below. Determine the magnitude of the resultant force acting on the body. 

 

 

   

 

Therefore, drawing vector diagram showing addition of forces: 

 

 

 

 
 

By COSINE RULE: )2(222 abCosCbac   

   FR
2 = 702 +702 – (2  70  70  Cos 120) 

   FR
2 = 4900 + 4900 – - 4900 

   FR
2 = 14, 700 

   FR = 14700   

   FR = 121.24 N 

The resultant force acting on the body is 121.24 Newton. 

Example 2 

A force of 6.0 N south and 9.0 N S 600 W act on the same point P. Determine the total force 

that must be acting on that point. 

 
 
 
                 
 
 
 
 
 
Step 1: Draw vector diagram showing the addition of forces: 

 

F1 

F2 

60° 

70 N 
70 N 

120° 

FRESULTANT 
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6 N 

9 N 

60° 
θ 

120° FTOTAL 

 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2: Use Cosine Rule to determine the magnitude: 
 

)2(222 abCosCbac   
FT

2 = 92 + 62 – (2  9  6  Cos 1200) 
FT

2 = 81 + 36 – (-54) 
FT

2 = 171 

FT = 171  = 13.1 N 

 
Step 3: Use Sine Rule to determine the direction: 

c

SinC

b

SinB

a

SinA


 

1.13

120

6

SinSin




   
 6

1.13

120Sin
Sin

 
397.0  

 
01 4.23)397.0(  Sin (Direction with respect to reference point: 60 - 23.4 = 36.60) 

 
Thus, The total force = 13.1 N  S 36.60 W 
 
1.3.13 RELATIVE VELOCITY IN ONE DIMENSION 
 
Imagine you're walking along a road, heading west at 8 km/hr. A train track runs parallel to 
the road and a train is passing by, traveling at 40 km/hr west. There is also a car driving by on 
the road, going 30 km/hr east.  
 

How fast is the train traveling relative to you?  
How fast is the car traveling relative to you?  
And how fast is the train traveling relative to the car? 

 

Example 1 
One way to look at it is this: in an hour, the train will be 40 km west of where you are now, 
but you will be 8 km west, so the train will be 32 km further west than you in an hour. 
Relative to you, then, the train has a velocity of 32 km/hr west. Similarly, relative to the train, 
you have a velocity of 32 km/hr east.  
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Using a subscript Y for you, T for the train, and C for the car, we can resolve this using vector 
subtraction:  

i. the velocity of the train relative to you = vTrain rel You = vT - vY 

vTrain rel You  =  40 km/hr west – 8 km/hr west 

  = 40 km/hr  - 8 km/hr 

  = 40 km/hr  + 8 km/hr 

  = -40   + 8 

  = -32 = 32 km/hr = 32 km/hr west. 

 

ii. the velocity of the car relative to you = VCar rel You = VC - VY 

vCar rel You  = 30 km/hr east – 8 km/hr west 

  = 30 km/hr  -  8 km/hr 

  = 30 km/hr  + 8 km/hr 

  = 30   + 8 

  =  38 

   38 km/hr  = 38 km/hr east. 

iii. the velocity of the train relative to car = vTrain rel Car = vT - vC 

vTrain rel Car  = 40 km/hr west – 30 km/hr east 

  = 40 km/hr  - 30 km/hr 

  = 40 km/hr  + 30 km/hr 

  = - 40   + - 30 

  = - 70 = 70 km/hr = 70 km/hr west. 

1.3.14 RELATIVE VELOCITY IN TWO DIMENSIONS 

1. BOAT PROBLEM 

This deals with boats (or swimmers) that are in running water. There are three different 
velocities we deal with in these problems and each is represented by a different subscript: 

 vBW – the velocity of the boat relative to the water 
 vWS – the velocity of the water relative to the shore 
 vBS – the velocity of the boat relative to the shore 

Generally, problems will ask you to find the velocity of the boat relative to the shore (vBS) or 
where the boat should aim to achieve a certain velocity. The relationship between the three 
velocities will change depending on which you are trying to find. 
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Example 1 

A canoeist, capable of travelling at a speed of 5 m/s in still water, is crossing a river that is 
flowing with a velocity of 3 m/s [E]. The river is 220 m wide. 

(a)If the canoe is aimed northward (directly across the river), what will its velocity be relative 
to the shore? 

 

 

vBS =? 

VBW and vWS form a right angled triangle with VBS as the hypotenuse. Therefore, using 
Pythagoras Theorem to find the velocity of the boat relative to the shore: 

 (vBS)2 = (vBW)2 + (vWS)2 

 vBS = 22 )()( WSBW vv   

 vBS = 22 35   

 vBS = 5.83 m/s 
 

Since we are dealing with vectors, we also need to find the direction of vBS : 

 Tan   =  
BW

WS

v

v
 

= tan-1 








BW

WS

v

v

  

= tan-1 








5

3
 = 310 

 
So,  vBS = 5.83 m/s  N 310 E [ 310 E of N] 

(a) How long will it take to cross the lake? 

T = ??? 

The time it takes for the canoeist to cross the river is dependent on the vertical component of 
its velocity only (vBW). The distance is must cross is in the vertical axis, the distance it moves 
horizontally has no effect. 

 D = vBW  T 

 T = 
BWv

D
 = 

sm

m

/5

220
 

  T = 44 s 

Therefore, the canoeist takes 44 s to cross the river 
 

vBS 

2
2

0
 

m
m

 

vBW 

vW

S 

θ 
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vw = 300 km/h 

vp = 400 km/h 

N 

θ 

R 

(b) Where is the landing position of the canoe, relative to its original position? 

dx = ? 
We can use the time we just calculated along with the horizontal velocity (VWS) to find the 
horizontal displacement. 

 dx  = vWS  T 

 dx  = 3 m/s  44 s 

 dx  = 132 m 

Therefore, the canoeist will land 132 m [E] of where he left the shore. 

(c) At what angle should the canoeist aim in order to land directly across the river? 

 = ??? 
This question requires a new sketch 
 
 
 
 
 
      
     

 

Note that the right-angled triangle has changed so that VBW is now the hypotenuse and VBS is 
now the vertical component. 
 

 
BW

WS

v

v
Sin   

       𝝦 = 










BW

WS

v

v
Sin 1  = 









4

31Sin  =  48.60 

Therefore, the canoeist should aim 48.6° W of N (N 48.6 W) in order to travel straight across 
the river 
2. PLANE PROBLEM 
NOTE: For aircraft, the true airspeed (TAS) is the actual speed of the aircraft through the air 
(the speed of the aircraft relative to the air).  The wind speed is usually measured relative to 
the ground. Groundspeed is the speed of the aircraft relative to the ground.  The groundspeed 
of the aircraft is the vector sum of the true airspeed and the wind speed.  
 
Example 2  
A pilot flies her jet with a true air speed of 
400 km/h North.  A crosswind from the East 
blows at 300 km/hr relative to the ground.  
Calculate the jet’s resultant velocity relative 
to the ground.  
Using Vector diagram:               

 

vWS 

vBS vBW 

2
2

0
 

  θ 
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By Pythagoras’ Theorem, the magnitude of the resultant velocity of the jet is:  

22 )400()300( R  = 500 km/hr 

and the direction can be found using basic trigonometry as follows:  









 

400

300
tan 1  = 36.90 

So, the velocity of the jet relative to the ground is 500 km/hr  N36.9o W.  

Note: if the angle between the two vectors being added together is other than 90o, Cosine 
Rule and Sine Rule can be used to solve the problem mathematically.  Note also the use of the 
compass in the diagram to establish direction.  

(a) In which direction should the pilot head and with what airspeed in order to actually fly 
north at 400 km/h relative to the ground?  

Since the pilot must fly into the wind, by vector diagram we obtain the diagram shown below: 

              

                  

               

   

    

 

If the pilot flies N 36.9o E with an air speed of 500 km/h, the wind will bring her back to a 
heading of due North at a speed of 400 km/h relative to the ground.  Remember also, there is 
usually more than one way to give the direction.  The direction the pilot should fly in this 
example could just as correctly be given as E53.1oN or as a True Bearing of 36.9o. 

1.3.15 EXERCISE 

1. A boat is observed to be travelling east at 2 m/s. It then changes direction and is observed 
an instant later to be travelling north at 3 m/s. 

 
              
 
          
 
 

vw = 300 km/h 

vp = 400 km/h R 

θ 

N 

B
o

at
 

3 m/s 

2 m/s Boat 
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(a) The vector that best represents the change in velocity of the boat is 
 
 
A.   B.   C.   D. 

 
(b) Calculate the magnitude of the change in velocity 
 
2. A ball travelling at 15m/s strikes a wall at right angles and rebounds along the same path 

at 12ms-1. Determine the change in velocity. 
 

3. Find the horizontal and vertical components: 
 

a) 50km at 20° east of North 
b) 70km at 30° south of East 

 

4. A lawn mower is being pushed at constant velocity through the grass. If the force applied 
to the handle is 80 Newton’s at 30˚ to the ground, determine the components of the force 
vector. 

 

5. Decide which trigonometric relationship should be used to add the following pairs of 
vectors. Then add the vectors. 

i. 6.0 km N 450 W and 3.0 km N 450 E. 
ii. 55.0 Newton S 250 E and 45.0 Newton N 450 W. 

iii. 1.3 m/s S and 2.5 m/s N 300 E. 
 

6. A hiker walks due east for a distance of 25.5 km from her base camp.  On the second day, 
she walks 41.0 km North West till she discovers the cave she wanted to see.  Determine 
the magnitude and direction of her resultant displacement between the base camp and 
the cave. 

 

7. An airplane heads north of east by 18 degrees for a distance of 67 km then heads due 
north for 39 km.  What is the planes total displacement? 

 

8. A cat walks on a train carriage at 2 m/s towards the west while the train moves at 5 m/s to 
the east as shown in the diagram below. 

 
The velocity of the cat relative to a man walking on the ground at 1 m/s towards the west 
as the train passes would be best given as 

 
A. 2 m/s west B. 4 m/s west  C. 2 m/s east  D. 4 m/s east 
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9. A dog runs at 10.0ms-l due east at the same time that a horse runs westwards at 14.0ms-l.  

 
Horse         dog 

 
 14 ms-1    10 ms-1 

 
Calculate the magnitude and direction of the velocity of the horse relative to the dog. 

10. Abdul is in a bus travelling to Nausori at 13 m/s while Jone is in another bus travelling to 
Suva at 8 m/s. If the buses pass each other at Nasinu, which is on the Suva - Nausori 
highway, calculate the magnitude and direction of Jone's velocity relative to Abdul's. 

 
11. An athlete runs with a velocity of 9 m/s North against a wind which is blowing 2 m/s 

Southward. Calculate the magnitude and direction of the velocity of the wind relative to 
the athlete. 

 
12. A boat shown below travels at 4.2 m/s relative to the water, in a river flowing at 2.8 m/s. 

 
At what angle, , must the boat head to reach the destination directly across the 
river? 

 
A. 560  B. 480   C. 420   D. 340 

 
13. A duck capable of swimming at 0.8 m/s crosses a 20 m wide river from point A on one 

bank to point B directly opposite on the other bank.  The river flows to the right at 0.5 m/s 
as shown below. 

 
The duck, with a great sense of direction, points upstream in order to overcome the river 
flow and reach point B.  The magnitude of the duck’s velocity relative to the river bank at 
A would be 

 
A. 0.50 m/s B. 0.62 m/s  C. 0.80 m/s  D. 0.94 m/s 
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14. A swimmer swims across a river which is 120 metres wide, at an angle of 60° to the 
horizontal as shown in the diagram given below: 

 

If her speed through the water is 2 m/s, how long will she take to reach the other side? 

15. A boat that has a water speed of 4.0 ms-1 heads upstream at an angle of 60° to a river 
bank. The river flows downstream at 3.0 ms-1 and is 50 m wide. 

 
 
 
 

            

 
 

(i) Calculate the component of the boat's velocity perpendicular to the river bank. 
(ii) After 5 seconds the boat will have drifted downstream a distance 
(a) 5.0 m  (b) 15.0 m  (c) 15.5 m  (d) 25.0 m 

 
16. A man from Nausori rows a punt at a steady speed of 2ms-l. He sets out at right-angles to 

the bank of the Rewa River which is 100 m wide at this section of the river. The river flows 
downstream at 1.5ms-l. 

 
 

 
                                                                               
 
        
 
 

(a) How long will the crossing take on : 
i. still river water ? 

ii. river water moving at 1.5ms-l downstream? 
(b) How far downstream does he land? 
(c) What is the speed of the punt relative to the river bank? 

 
 
 
 
 
 
 

60

° 

4 ms-1 

3 ms-1 

1.5 ms-1 

2 ms-1 

boat Rewa River 

bank 

100 m 
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17. A boat crosses a river at 3 m/s relative to the water. The 200 m wide river flows at 1 m/s 
as shown below. 

 
What would be the velocity of the boat as observed by a stationary observer on the 
river bank from which the boat departed? 

 

(a) How long does the boat take to cross the river? 
(b) How far downstream is the boat taken by the river flow with reference to a point 

directly opposite where it started?     
 

18. An aircraft has a constant horizontal speed of 100 m/s relative to the wind. The pilot 
wants to fly directly east, but there is a wind blowing from the north with a speed of 
40 m/s. 

 

(i) Draw a labelled vector diagram showing the direction in which the pilot must point the 
aircraft to actually fly east in the wind.    

(ii) Calculate the angle at which the aircraft must fly to actually travel east. 
(iii) Calculate the velocity of the plane relative to the ground. 

 

19. A ship is heading due west at a steady speed of 15 km/h.  A current of 3 km/h is running 

due south.  Calculate the velocity of the ship relative to the seabed.  (Hint: The velocity of 

the ship plus the velocity of the current will add up to the total velocity of the ship relative 

to the seabed.) 

1.4 FORCES 
Force (symbol F) is a vector quantity because it involves both size and direction. The SI unit for 

force is the newton (symbol N) 

RESULTANT FORCE, FR: When two or more forces act on the same object they can be replaced 

by a single force that has the same effect. This single force is called the resultant force. The 

resultant force is found by adding the forces acting, taking into account their directions. 

Example 

     

The resultant force, Fr = 4 N downward By Pythagoras theorem, Fr
2 = 62 + 82  

      Fr =
22 86   = Fr = 10 N    

Newton’s second law 
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Newton’s second law states that “the relationship between the resultant force, F, acting on 

an object; the mass, m, of the object; and the acceleration, a, of an object is: 

F = ma 

Where F is measured in N, m in kg and a in ms-2. 

This shows that if you keep the mass constant and double the applied force the acceleration 
will double. 

Example 1 

A car of mass 5000 kg is accelerated by a resultant force of 600 N. Calculate the acceleration, 

a. 

F = ma » 
m

F
a    » 

kg

N
a

5000

600
   = 0.12 ms-2 

Example 2 

A rock is accelerated at 13 ms-2 when a net force of 50 N is applied to it. Find out the mass of 

the rock. 

F = ma » 
a

F
m    » 

213

50



ms

N
m   = 3.85 kg 

1.4.10 EQUILIBRIUM IN TWO DIMENSIONS 

When two or more forces are acting on the same object at the same time and their sum is 

zero then the object is said to be in equilibrium. 

Example 1 

 

 

 

 

 

Object is at equilibrium position. 

The load is static. 

          

 

 

 

 

F1 F2 

F3 

The sum of the forces F1, F2 and F3 equals zero i.e. the resultant force 

which is the vector from the tail of the first to the head of the last is zero. 
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Thus, we can write the equations of equilibrium for a two-dimensional structure as  
 

Ʃ F x = 0,   
Ʃ F y = 0,   
Ʃ M A = 0, where A is any point in the plane of the structure. 

 

Example 2 

A pendulum which weighs 20.0 N is attached to a string.  It is held aside by a 

horizontal force F to make an angle of 40° to the vertical as shown in the 

diagram.  

 
 
 
 
 
 
Calculate: 
(i) The magnitude of the tension T in the string 
(ii) The force F. 
 
Sketching the free body diagram of the pendulum: 

 
 

 
 

Writing equations of equilibrium: 

(i)   0yF    Fy = 20.0 N 

 

Thus Tension T: 
T

F
Cos

y
   

Cos

F
T

y
 = 

040

20

Cos

N
 = 26.1 N 

 

(ii)   0xF    Fx = F   

 

Thus Force F: 
T

F
Sin x    TSinFx   = 26.1  Sin 400 = 16.8 N 

 

Fy 

Fx 

400 

400 
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Example 3 

A car engine of weight 2000 N is lifted by means of a chain and pulley system. The 

engine is initially suspended by the chain, hanging stationary. Then, the engine is pulled 

sideways by a mechanic, using a rope. The engine is held in such a position that the 

chain makes an angle of 300 with the vertical. In the questions that follow, the masses 

of the chain and the rope can be ignored. 

 

(i) Draw a free body representing the forces acting on the engine in the initial 
situation. 

(ii) Determine the tension in the chain initially. 
(iii) Draw a free body diagram representing the forces acting on the engine in the 

final situation. 
(iv) Determine the magnitude of the applied force and the tension in the chain in 

the final situations. 
Solution: 

(i) Initial free body diagram for the engine: 
There are only two forces acting on the engine initially: the tension in the chain, Tchain 

and the weight of the engine, Fg. 

        

      

 

(ii) Determine the tension in the chain: 
 
The engine is initially stationary, which means that the resultant force on the 

engine is zero. There are also no moments of force. Thus the tension in the 

chain exactly balances the weight of the engine. The tension in the chain is: 

TCHAIN = Fg 

TCHAIN = 2000 N 

TCHAIN 

Fg 
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(iii) Final free body diagram for the engine: 
 
There are three forces acting on the engine finally: The tension in the chain, the 

applied force and the weight of the engine. 

  

 

 

 

           

     

(iv) Magnitude of the applied force and the tension in the chain in the final 
situation: 
 

- 
A

O
tan   

g

APPLIED

F

F
030tan  

030tan)2000(APPLIEDF = 1155 N 

 

- By Pythagoras:  TCHAIN = 22 )1155()2000(   

TCHAIN = 2310 N 

1.4.12 FORCES IN ONE DIMENSION 

I. Masses pulled by strings 
 

       

    

 

When two objects of mass m1 and m2 are pulled by a force F by means of light 

inextensible strings A and B we can write: 

F = (m1 + m2) a 

 

Hence,      a = 
)( 21 mm

F


 

 

30° 

Fg 

30° 

Fapplied 

      m2  m1 B A 

F 
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The tension in string A is F, and the tension in string B is the force needed to give m2 

acceleration a, where a is given by the above equation. Hence, 

Tension in the string B = 
)( 21

2

mm

Fm


 

String B pulls on both m1 and m2 with this force (Newton's Third Law). 

Example 1 

The diagram shows two masses, m1 and m2 connected by a string and pulled together 

with a force of 16N. 

       

  

 

Calculate: 

(i) The acceleration of the system 
(ii) The tension in string B 
(iii) The tension in string A 
Soln: 

(i)   
21 mm

F
a


  = 

kg

N

)35(

16


  =  2 ms-2 

(ii) Tension in string B, F = ma = (3kg) (2ms-2) = 6 N. 

(iii) Tension in string A = Force F = 16N. 
 

Example 2 

Two toy boxes of masses, 10 kg and 20 kg, are on a frictionless horizontal surface and 

are connected by a light string. A 50 N force is applies to the 10 kg box as shown below. 

 

            

                          

 

If a total frictional force of 14 N acts on the masses, calculate the acceleration of the 

boxes. 

 m1 = 5kg    m2 = 3kg 
B 

A 

16 N 

m1 = 20kg  m2 = 10 kg 
T 

50 N 
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Soln: FNet = Fapplied - Ffriction = 50 N – 14 N = 36 N 

 
21 mm

F
a Net


   =  

kg

N

)1020(

36


  = 1.2 ms-2 

II. Bodies in contact 
   

 

            

 

If two objects in contact are accelerated by a force F as shown, then both will stay in 

contact with each other and will accelerate in the direction of the force. 

F = (m1 + m2) a 

 

a = 
)( 21 mm

F


 

The force applied by m2 to m1 is given by 

)( 21

1

mm

Fm


 

This force has the same direction as the acceleration. From Newton's Third Law, this 

must be equal and opposite to the force applied by A to B. Hence the force applied by 

m1 to m2 is: 

)( 21

1

mm

Fm


 but has direction opposite to that of the acceleration. 

Example 3 

A force of 7.5 N is applied to two objects as shown below. 

 

 

(i) Calculate the acceleration of the system. 
 

(ii) Calculate the force applied to the 10 kg object by the 5 kg object. 

 

 

 

 

m1 

m2 
F 
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Soln: - acceleration, 
)( 21 mm

F
a


  = 

kg

N

)105(

5.7


= 0.5 ms-2. 

 

- Force applied = 
)( 21

1

mm

Fm


= N

)105(

5.75




 = 2.5 N 

 

III. Horizontal acceleration due to gravity 
 
 

 

 

  

       

            

Two masses are connected by a light inextensible string over a pulley as shown above.  

 The mass m1 is accelerating horizontally across a frictionless surface, owing to 
the action of gravity on m2.  

The force acting on m1 is the horizontal force T, the tension in the string.  
 

For m1 we can write 

        T = m1a     (1) 

 Both masses will experience same acceleration, a. 
 There are two forces acting on m2, namely T, the tension in the string, acting 

upward, and the weight, m2g, acting downward. For m2 we can write 
 

m2a = m2g - T 

T = m2g - m2a     (2) 

Since T is the same for both m1 and m2, Equations 1 and 2 give us: 

m1a = m2g - m2a 

a = 
)( 21

2

mm

gm


 

 

m1 

m2 

T 

T 

m2g 
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Example 4 

Two masses are connected by a light string over a frictionless massless pulley.   

Assume mass m is resting on a frictionless horizontal surface. 

 

 

 

 

 

 

 

(i) Draw and label the forces acting on mass m2. 
 
(ii) What is the acceleration of mass m2? 

 
(iii) Determine the tension, T on mass m1. 

 
Soln: (i)      

    

 

                            m2 

 

   Fw = mg = (6kg)(10N/kg) = 60 N 

 

 (ii) acceleration, 
21

2

mm

gm
a


   =  

kg

N

)46(

60


  =  6 ms-2 

 (iii) Tension, T on mass m1 :  T = m1a 

      T = (4 kg) ( 6 ms-2) 

            = 24 N 

 

 

 

 

T 
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IV. Masses over pulley 
 
 

 

 

                  

 

         

           

Two masses m1 and m2 are connected by a light inextensible string over a frictionless 

pulley as shown.  

 Since m1 < m2, m1 will accelerate up while m2 will accelerate down when the 
system is released. Each will have acceleration a. 

 Two forces act on m1, namely tension T upward, and weight m1g down. Since 
m1 is accelerating upward, we can write: 
 
m1a = T – m1g, 

 

i.e.   T = m1g + m1a       (1) 

 

 There are two forces acting on m2, namely tension T up, and weight m2g down. 
Since m2 is accelerating down, we can write: 

 

m2a = m2g - T 

 

i.e.   T = m2g - m2a                   (2) 

From Equations 1 and 2, since T = T, we can write 

  m1g + m1a = m2g – m2a 

Rearranging, making ‘a’ the subject: 

 

m1 
m2 

m1 < m2 

T T 

a a 

m2

g 

m1
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a = 
)(

)(

21

12

mm

mm
g




 

 

The tension can now be found: 

  T = m1g + m1a 

 

Example 5 

Masses of 20 kg and 25 kg hang on opposite ends of a light string which passes over a 

frictionless pulley as shown below.  

 

 

 

 

                    

 

 
(i) Calculate the acceleration of the system.  

a = 
)(

)(

21

12

mm

mm
g




 =   

kg

kg

)2025(

)2025(
10




  =  1.11 ms-2 

(ii) What is the tension in the string? 
 

T = m1g + m1a =(20kg  10 ms-2)  +  (20kg  1.11 ms-2) =  200 N  +  22.22 N 

         = 222.22 N 

1.4.13 FORCES IN TWO DIMENSION 

I. Acceleration down slopes 
 

If a mass m is placed on a frictionless slope inclined at an angle  to the horizontal, the 

weight of the object mg will have a component down the slope and also at right angles 

to the slope. 

20kg 25kg 

T T 
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The acceleration a, down the slope is due to the component of gravity down the slope. 

ma = mg sin  

Thus,  a = g sin  

 

The component of gravity at right angles to the surface is mg cos . From Newton's 

Third Law this is equal and opposite to the normal reaction R which is the force applied 

by the surface of the slope to the object. 

Example 1 

The diagram shows a mass M on an inclined plane with three arrows drawn to 

represent the weight and its components. 

            

(i) Which of the arrows shows the component of the weight that determines the 
friction between the mass M and the inclined surface? 

- Arrow 3 
 

(ii) If M = 4kg and friction is negligible, calculate the acceleration of the mass. 
 

- a = gSin = (10 N/kg) (Sin 300) = 5 ms-2. 
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II. Slopes and pulleys 

                                                                                                             

The figure above shows that a mass m1, is on a frictionless slope inclined at an angle  

to the horizontal. A light inextensible string connects m1 to m2 over a frictionless pulley 

as shown. 

 There are two forces acting on m1, i.e. m1 g sin   down the slope and the 
tension in the string T up the slope.  

 There are two forces acting on m2, i.e. gravity (m2g) down, and T, the tension in 
the string, up. 

 

CASE 1: If m1g sin  > m2g, m1 will slide down the slope while m2 will move up. 
Both will have the same acceleration, a.  
 

- For m1 we can write: 

m1a = m1g sin  - T 

i.e.   T = m1g sin   - m1a     (1) 

- For m2 we can write: 
m2a = T - m2g 

   

i.e.   T = m2a + m1g      (2) 

Hence from Equations 1 and 2 we can write: 

 m1g sin  - m1a = m2a + m2g 

 

i.e.  a =  
21

21 sin

mm

gmgm




  

 

From this the value of T can be calculated using equation (1) or (2) 
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CASE 2: If m2g > m1g sin , m1 will slide up the slope while m2 will move 
downwards. Each will have acceleration a.  

- For m1 we can write: 

m1a = T – m1g sin 

i.e. T = m1g sin + m1a      (3) 

- For m2 we can write: 
     m2a = m2g – T 

i.e. T = m2g – m2a       (4) 

From equations 3 and 4 we can write: 

 m1a + m1g sin = m2g – m2a 

This gives the following expression for a: 

 

a = 
21

12 sin

mm

gmgm



 
 

 

From this T can be calculated. 

Example 2 

A 5.0 kg mass is accelerated from rest at the bottom of the 4.0 m long ramp by a falling 
20.0kg mass suspended over a frictionless pulley. The ramp is inclined 30O ramp from 
the horizontal. 

 

(a) Determine the acceleration of the 5.0 kg mass along the ramp.  
(b) Determine the tension in the rope during the acceleration on the 5.0 kg mass along the 

ramp. 

 

 

http://www.physics247.com/physics-review/index.shtml
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Soln:  

- acceleration of 5 kg : 

21

12 sin

mm

gmgm
a







 = 

)205(

)30sin8.95()8.920( 0




 = 

25

5.171
 = 6.86 ms-2. 

- Tension, T: T = m2g – m2a =(20  9.8) – (20  6.86) 

=58.8 N. 

1.4.14 EXERCISE 

1. Which of the following statements is Newton’s third law of motion? 
A. Every force causes a reaction. 
B. To every action there is an equal and opposite reaction. 
C. The forces acting on a body are always equal and opposite. 
D. If there is no resultant force on a body then there is no acceleration. 

 

2. The only forces acting on the object shown below are given as F1 and F2 with equal 
magnitude. 

 

Which of the following statements is not possible? 

A. The object is at rest. 
B. The object is accelerating to the left 
C. The object is moving with constant velocity to the right. 
D. The object is moving with constant velocity towards the top of the page. 

 

3. A point is acted on by two forces in equilibrium. The forces 
A. have equal magnitudes and directions. 
B. have equal magnitudes but opposite directions. 
C. act perpendicular to each other. 
D. act in the same direction. 
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4. A 0.50 kg mass is suspended as shown in the diagram. 

 

If the system is in a state of equilibrium, what is the tension in the horizontal 

string? 

A. 2.5 N  B. 2.9 N  C. 4.2 N  D. 4.9 N 

5. The diagram shows an object of weight W, attached to a string. A horizontal force F 

is applied to the object so that the string makes an angle of θ with the vertical when 

the object is at rest. The force exerted by the string is T. Which one of the following 

expressions is incorrect? 

 

A. F + T + W = 0   B. W = T Cos C. 
W

F
Tan    D. W = T Sin 

 

6. A 100 kg object hanging from the ceiling 
is pulled to the right by a force F as 
shown below. 

 

If the system is in a state of equilibrium, 

calculate: 

(i) the force F. 
(ii) the tension in the string joining the mass to the ceiling. 
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7. A rope of negligible mass is strung between two vertical struts. A mass M of weight 
W hangs from the rope through a hook fixed at point Y. 

 

i. Draw a vector diagram, plotted head to tail, of the forces acting at point Y. Label 
each force and show the size of each angle. 

ii. Where will the force be greatest? Part P or Q? Motivate your answer. 
iii. When the force in the rope is greater than 600 N it will break. What is the 

maximum mass that the above set up can support? 
 

8. The diagram given below shows a system of two masses connected by a string and 
acted on by a 24 N force. The surface is frictionless. 

 
         

 

The tension in the string connecting the two masses is 

A. 24 N  B. 18 N  C. 8 N  D. 6 N 

9. Two toy boxes of masses,10 kg and 20 kg, are on a frictionless horizontal surface 
and are connected by a light string. A 50 N force is applied to the 10 kg box as 
shown below. 

 

 

If a total frictional force of 14 N acts on the masses, calculate the acceleration of 

the boxes.  

10. The diagram below shows two masses on a bench top connected by a light 
inextensible string. 
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The system is accelerating at 3 m/s2 as shown. 

(i) Find the net force acting on the system. 
(ii) Calculate the tension, T, in the string. 
(iii) Find the frictional force between the 3 kg mass and the bench top. 
 

11. The diagram below shows two masses connected by a light inextensible string 
 

(i) Calculate the acceleration of the masses. 
(ii) Determine the tension in the string. 

 

 

 

12. The diagram given below shows a 1 kg mass 
on a frictionless inclined plane and a 4 kg hanging mass. Both are connected by a 
light string over a smooth pulley. 

 

  

 

 

F is the component of the weight of the 1 kg mass along the inclined plane. 

 (i) Find the magnitude of F. 

 (ii) Hence calculate the acceleration of the masses. 

 

13. A force of 7.5 N is applied to two bodies to, A = 5 kg and B = 10 kg. 

 

 

 

Calculate: 

(a) the acceleration produced 
(b) the force applied to B by A 
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14. A black disk hangs from two wires as shown.  If the tension in each cable is 

230N, what is the weight of the black disk?     

 

 

 

1.5 MOMENT 

Torque or Moment refers to the turning effect of force and is measured by the product 

of the force and the perpendicular distance of the force from the turning point. 

Torque or Moment = Force x perpendicular distance 

 

 

 

Example: A force of 12 N acts at 8.2 cm from a pivot is needed to lift the cap off a 

bottle of soft drink 

  

 

 

 

 

Torque applied is: Torque = Force x distance 

     = 12 x 0.082                      (8.2 cm = 0.082 m) 

     = 0.98 Nm anticlockwise 

Couple occurs where two equal and oppositely directed forces act at a distance apart. 

A couple causes rotation only and the moment of the couple about any point is Force x 

distance i.e. one of the force by the perpendicular distance between the two force. 
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1.5.10 Equilibrium 

Equilibrium occurs when an object is at rest or moving uniformly, as describe in 

Newton First Law. An object is describe as being in equilibrium when both the resulted 

force is zero and the sum of all the torque acting on the object is zero. 

 

 

1. The resultant force acting on the 
object is zero; i.e. the vector sum of 
the force acting is zero. 
∑ F = 0,  𝑭𝑿 = 0 
𝑭𝒀 = 0 

 
The acceleration is zero so the object 
will either be stationary or have a 
uniform motion. 

2. The sum of all the torque acting    on 
the object is zero. 

                    ∑ Torque = 0 
 

As the result, the object will not twist 
or rotate. Clockwise moment equal 
Anticlockwise moment about any 
point on the object. 

 

Most situations involve objects in equilibrium for example a painter organizing trestles 

and planks, or engineer working on bridge designs. The weight of any object always 

acts down from the centre of mass. It’s the point at which, if an object is suspended or 

pivoted, the object will balance.                                                   

 

  

  

1.5.11 PAINTER ON SCAFFOLDS 

Example 1:  

A painter weighing 865N stands on the plank 4m long, this is supported at each end by 

a stepladder. If he stands 1m from one end of the plank, what force is exerted by each 

stepladder?  

EQUILIBRIUM 
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Solution: 

Redraw the diagram above using force diagram.  

 

To determine the force at A (𝐹𝐴), moments are taken about pivot B. At this point, 𝐹𝐵 

produce no torque. 

Anticlockwise moments = 𝐹𝐴 x 4 

                                           = 4𝐹𝐴 

Clockwise moments = 865 x 3 

                                     =2595 N 

Clockwise moments = Anticlockwise moments 

                                                                                   2595 = 4𝐹𝐴 

                                                                                       𝐹𝐴 = 
2595

4
 

                                                                                        𝐹𝐴 = 649 N 

                                                  Sum of force upwards = Sum of force downwards 

                                                                             𝐹𝐴+ 𝐹𝐵 = 865  N 

                                                                              649 N + 𝐹𝐵 = 865 N 

                                                                                          𝐹𝐵 = 865 N – 649 N             

                                                                                          𝐹𝐵 = 216 N 
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1.5.12 LADDER 

Example 2 

An 8 m ladder of weight 𝐹𝑊 = 355 N lean against a smooth vertical wall. The term 

smooth means that the wall can exert only a normal force directed perpendicular to 

the wall and cannot exert a frictional force parallel to it. A fire fighter whose weight 

(𝐹𝐿) is 875 N, stand 6.30 m from the bottom of the ladder. Assume that the ladders 

weight act at the ladders centre and neglect the hose weight. Find the force that the 

wall and the ground exert on the ladder. 

 

 

 

 

 

 

 

 

Free Body Diagram 

∑ Torque = 0 

∑ Torque = ( 𝐹𝑃  x  𝑑𝑃  ) + ( - 𝐹𝑤 x 6.30 Cos 50°) + ( - 𝐹𝐿 x 4 Cos 50°)    ( force and 

perpendicular distance) 

∑ Torque = ( 𝐹𝑝 x 8 Sin 50°) - ( 875 x 6.30 Cos 50°) - ( 355 x 4 Cos 50°) 

              0 = 6.13 𝐹𝑝 - 3543 – 913 

        4456 = 6.13 𝐹𝑃 

             𝐹𝑃 = 
4456

6.13
 

             𝐹𝑃 = 727N 
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1.5.13 DIVING BOARDS 

Example 3 

A man whose weight is 530N is poised at the right end of the diving board, whose 

length is 3.90m. The board has negligible weight and is bolted down at the left end, 

while being supported 1.40m away from the fulcrum. Find the force ( 𝐹1) and force ( 𝐹2) 

that the bolt and the fulcrum, respectively exert on the ground. 

 

Free – Body Diagram 

 

 𝐹1 point downwards because the bolt will pull in that direction. 

 𝐹2 point upwards because the board pushes downward against a 

fulcrum, which in reaction pushes upwards on the board. 

 Board is stationary, it is in equilibrium. 

∑ Torque = 0 

                                                            ( 𝐹2 x 𝑑2) + (- 𝐹𝑤 x𝑑𝑤) = 0 

                                                      ( 𝐹2 x 1.40) – (530 x 3.90) = 0 

                                                                          1.40 𝐹2 - 2067 = 0 

                                                                                      1.40 𝐹2 = 2067 

                                                                                               𝐹2 = 
2067

1.40
 

                                                                                               𝐹2 = 1476 N 
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It is in equilibrium 

∑𝐹𝑦 = 0 

                                                                  - 𝐹1 + 𝐹2 – 530N = 0 

                                                                  -𝐹1 + 1480 – 530 = 0 

                                                                              - 𝐹1 + 950 = 0 

                                                                                      946 N = 𝐹1 

1.5.13 EXERCISE 

1. PQ represents a uniform beam of mass 2.0kg supported at ends P and Q. An object 

of mass 4.0kg is placed so that it is 0.5 m from Q. The beam is 2.0m long. 

(a) By how much does the force on Q exceed the force on P? 

(b) Calculate the total anticlockwise torque (moment) about P. 

 
2. A uniform beam in equilibrium is suspended by a cord at X which is 2.0m from one 

end of the beam and 3.0m from the other end. Masses provide forces on the end of 

the beam of 28N and 10N. Determine the weight force of the beam. 

 

3. A uniform plank of length 5.0m and weight 225N rest horizontally on two 

supports, with 1.1m of the plank hanging over the right support. Find the force 

exerted by the two supports. 
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4. An 840N painter stands on a 7.0m board of negligible weight. The board is 

supported by two step ladders as shown below.  

 
 

(a) State the principle of moments, 

(b) What is the force exerted on the board by the left step ladder? 

            

5. A 40 kg boy stands on a horizontal plank, 1 m from one end and 3m from the 

other. The plank is uniform and has a mass of 25kg. It is supported by a trestle 

at each end. Find the force each trestle exerts on the plank. 

 

 

 

 

 

1.6 KINEMATICS 

1.6.10 KINEMATIC EQUATION OF MOTION 

Problems involving uniform acceleration in a straight line over a time interval can often 

be quickly solved using a set of formula called the Kinematic Equation of Motion.  

1st equation:     𝑣𝑓 = 𝑣𝑖  +at  

2nd equation:      d = 𝑣𝑖𝑡 + ½ a𝑡2 

3rd equation:    𝑣𝑓
2= 𝑣𝑖

2 + 2ad  

Where: 

𝑣𝑓 =final velocity (m/s) 

𝑣𝑖  = initial velocity (m/s) 

a = constant acceleration (m/s2) 

t = time (s) 

d = distance (m)  

 Each equation contains four or five variables (t, d,𝑣𝑖,𝑣𝑓 ,  a) 
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In deciding which equation to use:  

1. To determine the unknown value of time (t) – we must use the 1st or 2nd equation  

2. To determine the distance (d): we must use the 2nd or the 3rd equation  

3. To determine the velocity (v) we must use the 1st or the 3rd equation 

Depending on the variable provided so it is important to list down what is given and 

what do we have to find out. 

Example 1 

A body moving with an initial velocity of 6m/s accelerates at 2m/𝑠2. Find  

(a) the distance gone after 3 seconds.  

𝑣𝑖  = 6m/s  

a = 2m/𝑠2 
 

 The unknown is the distance – use the 2nd or the 3rd equation  
 

Since (t) is given- use 2nd equation  

d = 𝑣𝑖𝑡 + ½ a𝑡2  

d = (6) (3) + (1/2) (2) (3)2 

d = 18 +9 

d = 27m 
 

(b) The velocity of the body after it has gone 20m  

  𝑣𝑖  = 6m/s      a = 2m/𝑠2       d = 20m   𝑣𝑓 
 

The unknown is velocity – use the 1st or the 3rd equation and since( t) is not given, use 

the 3rd equation  

𝑣𝑓
2 = 𝑣𝑖

2 + 2 ad  

𝑣𝑓
2 = (6)2 + 2(2) (20) 

𝑣𝑓
2 = 36 +80 

𝑣𝑓
2 = 116 

𝑣𝑓 =√116 

𝑣𝑓 = 10.77m/s 

≈ 10.8m/s 
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Example 2  

 A ball initially travelling at 4.0m/s rolls up a slope and 

then slows uniformly to a stop 16.0m up the slope. 

What is the acceleration of the ball? 

𝑣𝑖  = 4.0m/s    d = 16.0m   𝑣𝑓 =0 

 use the 3rd equation of motion 

𝑣𝑓
2 = 𝑣𝑖

2 + 2ad  

02 = 42 + 2a (16) – (substitute the variable) 

0 = 16 + 32a (re arrange to make a the subject of the formula) 

-16 = 32a  

∴  a = - 0.50m/𝒔𝟐 

1.6.11 VERTICAL MOTION OR FREE FALL 

The acceleration of bodies under the gravitational pull of the earth is 10m/𝑠2. Positive 

acceleration (a = 9.81m/𝑠2) and negative is moving up (a= -9.81m/𝑠2) if the object is 

moving up remember at the highest level of a body its vertical velocity is zero (𝑣𝑓𝑦 = 

0m/s) 

Example 1  

A body is thrown vertically upwards with an initial velocity of 30m/s  

(a) Find the greatest height reached 

 

 

 

 

 

 

 

 

 

𝑣𝐼=30m/s     𝑣𝑓 = 0        a = -9.81m/𝑠2 

(moving up)  

Use the 3rd equation of motion  

𝑣𝑓
2 = 302 + 2(-9.81) d  

0 = 302 – 19.6d  

19.6d= 900 

6.19

900

6.19

6.19


d
 

d = 46  
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(b) The time to get to the highest 

point  

a = -9.81m/𝑠2    𝑣𝑖= 30m/s   

 𝑣𝑓= 0m/s 
 

Use the 1st equation of motion   

atvv if   

0 = 30 + (-9.81) t  

0 = 30 - 9.81t  

9.81t = 30 

81.9

30

81.9

81.9


t
 

t = 3.1 seconds  

Example 2 

A rock (initially statutory) is dropped 

from a cliff 50m above the sea. 

 

(a) How far does it fall in 2.0 

seconds  

𝑣𝑖=0   a= 9.81m/𝑠2   t= 2.0s   

 d= 50m  

Use the 2nd equation of motion 

d = 𝑣𝑖  + ½ a𝑡2 

d = (0) (2) + (1/2) (9.81) (4) 

d = 19.6m  

 

 

g = 9.81 m/s2 

d = 50 m 



CHAPTER 1: MEASUREMENTS 

55 
 

(b) How long does it take to fall 50m  

a = 9.81m/s    d= 50m   𝑣𝑖= 0m/s 

Use the2nd equation of motion 

d = 𝑣𝑖  + ½ a𝑡2  

50 = (0) t + ½ (9.81) (𝑡2) 

50 = 4.9𝑡2 

9.4

9.4

9.4

50 2t
  

10.2 = 𝑡2 

2.10 = t  ∴ t= 3.2 seconds 

1.6.13 EXERCISE 

Use g = 9.81m/𝑠2 in vertical motion 

1. Calculate the uniform acceleration of a sports car which: 

a) starts from rest and reaches a speed of 15.5m/s in 8 s; 

b) Changes its speed from 20m/s to 36m/s in 5 s; 

c) Starts from rest and goes  a distance of 98m in 7 s; 

d) Starts from rest and travels a distance of 22m during the sixth seconds of its 

motion; 

e) Slows down from a speed of 67m/s and come to rest in 12 s 
 

2. A ball roll from rest down an incline plane with a uniform acceleration of 3.6m/𝑠2. 

a) What is its speed after 7.2 seconds? 

b) How long will it take to reach a speed of 38m/s? 

c) How long does it take to travel a distance of 200m, and what is its speed after 

going this distance? 

d) How far does it travel during the third seconds of its motion? 
 

3. A car, initially travelling at a uniform velocity, accelerates at the rate of 1m/𝑠2 for a 

period of 12 seconds. If the car travelled 190m during this 12 seconds interval, what was 

the velocity of the car when it started to accelerate? 
 

4. A skydiver drops from a hovering helicopter and falls freely for 5 seconds before opening 

his parachute. 

a) What speed has he attained when he opens his parachute? 

b) How far did he fall on free fall? 

c) What was his average speed while falling freely? 
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5. An object is thrown vertically upwards with an initial speed of 16m/s from the top 

of a bridge 25m above the water. How long does it take to reach the water? 

1.7     PROJECTILE MOTION 

A projectile motion is any object that moves through the air without its own source of 

power, only under the influence of gravity for example bullets, shot put, netball and 

softballs. 

The only force acting on the projectile is its weight forces which act vertically downwards 

and so only the vertical component of the velocity of the projectile changes with time. 

Horizontal component remain constant through the motion. 

1.7.10 FULL PROJECTILE 

 

This is projectiles under the influence of gravity. 

Path shows by projectile motion is called parabola. 

 

 Maximum height of flight is reached when the vertical component of the 

projectile velocity is zero. 

 Total time of flight is twice the time taken to reach the maximum height. 

 Range is the distance travelled horizontally is determined by the product of 

horizontal component of velocity and the total time of flight. 

Range = Velocity in horizontal component x Total time of flight 

 The projectile hits the ground at the same speed as it was fired and makes the 

same angle to the horizontal. 
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Example 1 

                            A rocket is fired at 1000m/s at an angle of 30°.

                                                                                                                                    

Projectile from the ground will need its components. 

                                               v = 1000m/s               𝑣𝑦= 𝑣𝑖= 1000 sin 30°                    

                                                                                             = 500m/s  

            300 

                                                                          𝑣𝑥= 1000cos 30°  

                                                                               = 866m/s      

Calculate: 

a) The greatest height reached by the rocket 

𝑣𝑓= 0m/s, a= -9.81m/𝑠2, 𝑣𝑖=500m/s, d=?   

             Use 3rd equation of motion:    𝑣𝑓
2= 𝑣𝑖

2 + 2ad 

                                                       0 = (5002) + 2(-9.81) d 

                                                       0 = 250000 – 19.6d 

                                                       19.6 d = 250000 

                                                       d = 
250000

19.6
 

                                                       d = 12755 m 

b) The time of flight of the rocket 

time to the greatest height: a=-9.81m/𝑠2, 𝑣𝑓= 0m/s, 𝑣𝑖= 500m/s 

use the 1st equation :   𝑣𝑓 = 𝑣𝑖  + at 

o= 500 + (-9.81)t     

                                                   9.81t = 500 

                                                    t = 
500

9.81
 

                                                    t = 51s 

Therefore time of flight = 2 x 51    =  102 s 

c)  The Range ( horizontal distance) travelled by the rocket 

Range = horizontal component of velocity x total time of flight 

            = 866m/s x 102s 

            = 88332m 
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1.7.11 HALF PROJECTILE 

Example 2 

 A 6kg projectile is launched horizontally from a height of 25m with a velocity of 20m/s as 

shown below. 

 

 

(i) Calculate the time of flight of the projectile 

(ii)  

𝑣𝑖= 0m/s, d = 25m, a = 9.81m/𝑠2 
 

Use the 2nd equation of motion: d=𝑣𝑖t + ½ a𝑡2 

                                                          25 = 0 + ½ (9.81)𝑡2 

                                                            25 = 4.9𝑡2 

                                                               𝑡2= 
25

4.9
 

                                                                t = √5.1 

                                                                 t = 2.26 s 

(iii) Calculate the velocity of projectile just before it hit the ground. 

 
     𝑣𝑦

2 = 𝑣𝑖
2 + 2ad 

                                       𝑣𝑦
2 = 0 + 2(9.8) (25) 

                                       𝑣𝑦 = √2𝑥 9.8𝑥25 

                                        𝑣𝑦 = 22.1m/s 
 

Use Pythagoras theorem: 

                                        𝑣2 = 𝑣𝑥
2+ 𝑣𝑦

2 

                                         𝑣2 = (202) + (22.12) 

                                          𝑣2 = 400 + 488 

                                           v = √888 

                                            v = 29.8m/s 

1.7.12 EXERCISE 

1. When an airplane is at an altitude of 500m and moving horizontally at a speed of 

160m/s, a small package is dropped from it. 
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a) How long does the package take to reach the ground? 

b) How far from the point over which  the package is dropped does it hit the 

ground? 

c) What is the shape of the path followed by the package? 
 

2. A ball is thrown horizontally with a speed of 16m/s from a point 3.8m above the 

ground. Calculate: 

a) the time taken by the ball to reach the ground. 

b) the horizontal distance travelled in that time. 

c) its velocity when it reaches the ground. 
 

3. A boy standing on the tray of the lorry travelling at 18km/h throw a ball vertically 

upwards with a speed of 10m/s and catches it again at the same level. What 

distance horizontally does the ball move while it is in the air? 
 

4. A cricket ball is hit with a velocity of 8m/s at an angle of 60 ° with the horizontal. 

Calculate: 

(a)  Its horizontal and vertical displacement after 0.5s has elapsed. 

(b) The time taken to return to the level from which it was hit, and the 

horizontal distance travelled in this time. 
 

5. A projectile is launched horizontally from a height of 42 meters with a velocity of 20 

m/s as shown in the diagram below. 

Calculate; 

 

(a) The time of the flight. 

 

(b) The range of the projectile. 

 

(c) The velocity of the projectile just   

before it hits the ground. 

 

 

6) A projectile is launched with a velocity of 100 m/s at an angle of 40° to the 

horizontal as given below: 

 

 

 

 

Calculate 

i. The time of the flight. 
ii. The maximum height reached. 

iii. The range (horizontal distance. 
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7) Osea kicks a rugby ball for conversion after 

scoring a stunning try. He kicks the ball at 1000 

m/s at an angle of 30o above the ground. 

a) Calculate the time taken to reach HMAX. 

b) What is the HMAX reached by the ball? 

c) What horizontal distance the ball travels? 

 

1.8     MOMENTUM. 

Momentum is a useful quantity to consider when collisions between different objects 

occur, or when explosion break objects into pieces or push objects apart. Momentum is 

the product of mass and velocity and it is a vector quantity. 

Momentum   =      Mass      ×      Velocity.  

                                                             Where m is the mass (kg) 

                                                                               v is the velocity (m/s) 

                                                                               P is the momentum (kg in /s) 

Example 1 

(a) A 35g golf ball travelling at 10m/s has momentum. 

p =   mv 

    =   (0.035)    ×    (10)       (changing 35g to 0.035) 

     =    0.35kg m/s 

b) A shopping  trolley of mass 20 kg moving at 0.85 ms¯¹  to the south has 

momentum 

p   =   mv 

            =    (20)   (0.85) 

           =    17 kgms¯¹ south. 

   (c )  ship of mass 40,000 tonne moving at  0.2 ms¯¹ has momentum. 

p   =   mv 

            = (4 × 10⁷) (0.2)     (changing 40,000 ton = 4 × 10⁷ kg) 

           =    8 ×   10⁶ kgms¯¹ 

 

       p     =      mv 
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1.8.10 CHANGE IN MOMENTUM. 

When force act on an object and changes its motion, the objects momentum will also 

change. Change in momentum (∆p) can be calculated using: 

Change in momentum = Final momentum - Initial momentum 

                         

 

Example:  A ball of 2kg was thrown against a wall at 3m/s to the left and rebounds at 3 

m/s. What is the change in momentum of the body? 

 

Initial momentum:     ρί   =   mvί 

                                             = (2) (3) 

                                             = 6kg m/s                          

Final momentum:       ρf   = mvf
 

                                             = (2) (3) 

                                             = 6 kg m/s                        

Method (1)        Method (2) 

∆ρ   =  ρf   -    ρί                                                                 ∆ρ    =    ρf     ‐      ρί 

                =           6             -                6                                   =   (2) (3) - (2) (-3) 

                                                                                                   =      6 +    6         

               =          6              +               6                                    =      12 kg m/s 

                                                                                                   = 12 kg m/s  to the Right. 

                 =          12 kg m/s                  

 

       ppp
if

  

         ~              ~             ~ 
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 1.8.11 IMPULSE 

Impulse is the product of the average force and the time internal over which the force is 

applied. This results in the acceleration of the object and changes of its momentum. 

Impulse is also equal to change in momentum.    

Newton’s 2nd Law:                F      =        ma 

                                                 F       =  m (
𝑣𝑓− 𝑣𝑖

𝑡
 ) 

                                                  F      =       m𝑣𝑓− m𝑣𝑖  / ∆ t 

                                            F x ∆ t   =    ∆p 

                                          Impulse  = change in momentum. 

                                                 (Ns)                             (Kgm/s)                                                                            

Example:  How long must a 300kg satellite, in orbit, fire its thruster rocket in order to 

increase its speed from 500m/s to 600m/s? The force exerted by the thruster when firing 

is 1500N. 

 

Solutions:  The desired change in momentum is: 

                     ∆ρ   =  m𝑣𝑓− m𝑣𝑖  

                      ∆ρ  =  m (𝑣𝑓 −  𝑣𝑖  )  

                      ∆p  =  (300)  (6000 – 5000) 

                             = 300 000 kgms-1 

The impulse needed to cause this change in momentum is 

F x ∆ t = ∆ p 

1500 x ∆ t = 300000 

∆ t = 
300000

1500
 

∆ t = 200 seconds 

The thruster rocket must be fired for 200 seconds. 
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1.8.12 CONSERVATION OF MOMENTUM IN TWO DIMENSIONS 

Momentum is conserved in collision and explosion. It is also conserved in all directions. If 

one objects moves at an angle to another object, then the angle must be taken in to 

account. A vector momentum diagram can be drawn for problem involving momentum in 

two dimensions 

 

 

 

 

Elastic and Inelastic collisions 

An elastic collision is one in which the total kinetic energy is the same before and after 

collision. 

 

An inelastic collision is one in which the total kinetic energy before collision is not equal 

to the total kinetic energy after collision. If the object sticks together after collision, the 

collision is said to be completely inelastic. 

 

 

Example 1 

A bowling ball, A, of mass 1.5kg and travelling to the right at 3.0m/s hits an identical ball, 

B , which is stationary. Ball A moves off at 2.0m/s at an angle of 90° to the direction in 

which B moves. 

 

 

 

 

(a) Find the speed of the ball B after collision. 

 

 

Total momentum before the collision = Total momentum after collision 

Momentum before collision / explosions = Momentum after collision / explosions 

 

Masses move separately 

vmvmumum 22112211   

Masses stick together 

vmmumum c)( 212211   

KEKE fi   

KEKE fi   
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              Momentum of ball A                                    Momentum of ball B 

 After collision = 3kgm/s                                                             (𝑚2𝑣2) 

                              

                                                  Total momentum before collision 

                                                      P = 𝑚1𝑢1 + 𝑚2𝑢2 

                                                          = (1.5 x 3) + (1.5 x 0) 

                                                          = 4.5kgm/s 

Magnitude of the momentum of ball B is obtained using Pythagoras theorem. 

𝑝𝐵 = √4.52 − 3.02 

𝑝𝐵 = 3.35kgm/s 

And the speed of ball B is: 

𝑝𝐵    = m v 

3.35 = 1.5v 

v       =  
3.35

1.5
 

v      = 2.2m/s 

(b) Find the direction of ball A after the collision. 

 

cos 𝜃   = 
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 

cos 𝜃  = 
3.0

4.5
 

𝜃         = cos−1 3.0

4.5
 

           = 48.2°  

 

(c) Find the direction of the ball B after the collision. 
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cos ∅   = 
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 

 

cos ∅  = 
3.35

4.5
 

 

∅         =  cos−1 3.35

4.5
 

 

∅        =   42° 

In this example, a vector diagram of velocities would form a similar triangle to the 

momentum triangle shown. This only happens when the two object have the same mass. 

 

(d) Show that collision in elastic collision. 

 

 

 

 

 

 

The total energy before collision is equal to total energy after the collision. Hence, it is an 

elastic collision 

Example 2 

A police car of mass 800kg travelling East, collide with another car of mass 500kg 

travelling North, at a road junction as shown below. 

 

Given that the two cars stick together after collision and move off with a common 

velocity of 12m/s in the direction shown. 

(a) Find the speed of 𝑢𝐴 and 𝑢𝐵 of each car before collision. 

(b) Show that the collision is inelastic. 

 

 

     

     

J

umumKE i

75.6

05.1
2

1
35.1

2

1

2
2

1
1

2

1

22

2

2

2

1







 

     

     
J

vmvmKE f

75.6

55.1
2

1
25.1

2

1

2
2

1
1

2

1

22

2

2

2

1







 

υA 

υB 
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Total momentum before collision = Total momentum after collision 

                                                                                                        Momentum of mass B before 

collision 

              Momentum after collision                                               𝑝𝐵 = 𝑚𝐵 𝑢𝐵 

            P = (𝑚𝐴 + 𝑚𝐵 ) v                                                                   𝑝𝐵 = 500 𝑢𝐵 

            P = (800+500)12                  30° 

            P = 15600kgm/s           Momentum of mass A before collision 

                                                                       𝑝𝐴 = 𝑚𝐴 𝑢𝐴 

                                                                      𝑝𝐴 = 800 𝑢𝐴 

(a) Velocity of mass A                                               Velocity of mass B 

       cos 𝜃 = 
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
                                                            sin 𝜃 = 

𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 

        cos 30 = 
800𝑢𝐴

15600
                                                                   sin 30 = 

500𝑢𝐵

15600
 

            𝑢𝐴 = 
15600 cos 30

800
                                                             𝑢𝐵 = 

15600 sin 30

500
 

           𝑢𝐴 = 16.9m/s                                                                    𝑢𝐵 = 15.6m/s 

(b)  

 

 

 

 

The total energy before collision is not equal to total energy after the collision. Hence, it is   

an inelastic collision. 

Example 3 

A 30kg mass suddenly splits into two fragments. One piece (mass A) is 10kg and the other 

piece is 20kg. The 10kg piece travel 30° above the horizontal at 8m/s and the (mass B) 

20kg piece travel 60° below the horizontal at 5m/s. Calculate the velocity of the 30kg 

mass before it splits. 

 

  

     

     

kJ

umumKE i

1.175

6.15500
2

1
9.16800

2

1

2
2

1
1

2

1

22

2

2

2

1







 

 

  

kJ

vcmmKE f

6.93

12500800
2

1

2

1

2

2

21






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(a) Find the momentum of the 10kg piece 

P = m x v 

P= 10kg x 8m/s 

P = 80kgm/s and its 30° above horizontal 

(b) Find the momentum of the 20kg piece 

P = m x v 

P = 20kg x 5m/s 

P = 100kgm/s and its 60° below the horizontal 

(c) Find the velocity of the 30kg mass before it splits 

Momentum before explosion = Momentum after explosion 

 

Momentum of mass A                                      momentum of mass B 

   After explosion = 80kgm/s                                         after explosion = 100kgm/s 

 

                                          Momentum before explosion  

                                                 P = 30𝑢1 

Use Pythagoras theorem:  

𝑐2 =  𝑎2 +  𝑏2 

(30𝑢)2 =  802 +  1002 

900𝑢2 = 6400 + 10000 

𝑢2 = 16400/900 

u = √
16400

900
 

u = 4.27m/s 

 

300 

600 

U1 
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1.8.13 EXERCISE 

1. A truck of mass 4000kg moving at 3.5m/s collides with a stationary truck to which it 

becomes automatically coupled. The truck moves along together at 2m/s, find the 

mass of the second truck. 

 

2. A bag of sand of mass 9kg which is suspended by a rope used as a target for a pistol 

bullet of mass 30g and which strikes the bag with a horizontal velocity of 301m/s. If 

the bullet remains embedded in the sand, determine the velocity of the bag 

immediately after impact. 

 

3. A toy locomotive of mass 420g moving at 30cm/s collide with a carriage of mass 

200g moving at 32cm/s in the opposite direction. If they become coupled together, 

what is there common speed after collision? 

 

4. An explosion blows a rock in to three parts; two pieces go off at right angle to each 

other – a 1kg piece at 12m/s and a 2kg piece at 8m/s. The third piece flies off at 

40m/s. 

(a) What is the mass of the third piece? 

(b) In what direction does the third piece fly? 

 

5. A ball A with a mass of 1kg and moving at 4m/s strike a glancing blow on the second 

ball B which is initially at rest. After the collision, ball A is moving at right angle to its 

original direction at a speed of 3m/s as shown. 

 

a) What is the magnitude of the momentum of B after the collision? 

b) In what direction is B moving after the collision? 

c) If B has the mass of 5kg, what is its speed after the collision 

d) If the time of impact was 0.02s, what was the magnitude of the average force 

exerted on B during the collision? 

e) Was this an elastic collision? Give reason for your answer. 
 

6. A 2kg ball traveling East at 4m/s collides with a 3kg ball 
traveling North at 2m/s. They stick together after 
collision. 
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a) Find the total momentum of the balls before collision. 

b) What is the total momentum of the balls immediately after collision? 

c) Calculate the speed of the balls immediately after collision. 

 

7. When a firework of mass 0.1 kg reaches its highest point, it has a horizontal velocity of,     

 ms-1
. At this point it explodes into two parts A and B  as shown. 

 

 

 

 

 

 

 

 

Calculate the speeds v and u. 

 

1.9 CIRCULAR MOTION 

To move around once in circular motion is known as rotation. Period (T) is the time taken 

for one rotation or revolution.SI unit for period is the seconds. Frequency is the number 

of rotation made per second. The SI unit for frequency is hertz. Period and frequency are 

reciprocal to one another. 

f
T

1
  and 

T
f

1
  

A ball tied to the end of a length of string is whirled around at a constant speed in a 

horizontal circle. 

 

Distance that the ball moves in one rotation is the circle circumference: 

                          D= 2πr,   where r is the radius of the circle and π is the constant (3.14). 
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The speed or velocity of the object travelling in circular motion can be calculated using: 

 

Where, r = radius (m) 

T = period (s) 

v = speed (m/s) 

Example 1 

The propeller blade of a single engine aircraft rotate with a frequency of 50HZ. If the 

blade have radius of 85cm, how fast do the tips of the propeller blades move? 

 

Period (T) = 
1

𝑓
     = 

1

50
 

                   = 0.02 seconds. 

Velocity (v) = 
2𝜋𝑟

𝑇
 

                      = 
2𝜋 (0.85)

0.02
             (85cm = 0.85m) 

                       = 267m/s. 

The frequency of rotation is sometimes expressed in revolutions per minute (rpm). The 

frequency in rpm is 60 times greater than the frequency in hertz, because there are 60 

seconds in a minute. 

Example 2 

A racing car’s revolution counter indicates an engine speed of 5000 rpm. Calculate this in 

Hertz.  

5000 revolution in 60 seconds 

∴       f =
5000

60
  = 83.3 HZ. 

1.9.10 FORCE AND ACCELERATION 

When a ball on a string is whirling around in a circle, various forces are acting. There is 

tension force in the string pulls the ball inward. The direction of this force is at right 

angles to the motion of the ball. It changes the direction of the ball but because the force 

is always at right angles to the direction of ball motion, the speed of the ball does not 

change. 

T

r
v

2

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The tension in the string that provides the force on the ball is called centripetal force. It 

causes the ball to accelerate, by changing the ball direction but not its speed. 

Centripetal Force:   
r

mv
FC

2

     where  m = mass (kg) 

                                                                      V = velocity 

                                                                     R = radius (m) 

The ball continually accelerating in the direction of the centripetal force, the inwards 

towards the centre of the circle. Acceleration is known as centripetal acceleration. 

                                     𝑎𝑐= 
𝑣2

𝑟
    where:     v= velocity (m/s) 

                                                                      R = radius (m) 

Example: 

During a hammer throw, an 8.0kg steel ball is swung horizontally with a speed of 12m/s 

in a circle of radius 1.5m.     

 

The force required to keep the ball moving in a circle is: 

                                              F = 
𝑚𝑣2

𝑟
 

                                                 = 
(8)(12)2

1.5
 

                                                 = 768N inwards. 
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Acceleration of the steel ball is: 

                                                 𝑎𝑐= 
𝑣2

𝑟
 

                                                      = 
(12)2

1.5
 

                                                      = 96 m/𝑠2 

Newton’s law of gravitation 

Newton's universal law of gravitational attraction states 

that two masses, m1 and m2, separated by a distance of 

r, attract each other with a force given by the following 

equation:  

 

 

Where m1 and m2 are masses (kg) 

  r Distance between masses from the center 

  







 

kg
mN

xG 2

2
11

10673.6  

Example 

1. Suppose two masses of 1 kg each are separated by 10 cm. What is the attracting 

force between them? 

 
   

 

2
11

22 2

9

1 1
6.673 10

0.1

6.673 10






  

 

kg kgNm
F

kg m

N

 

2. The force between two masses is N0.18 . Determine the new force if  the distance 

between the two masses is halved. 

2
rr   

r

mm
GF

2

21   
 

2

2

21

r

mm
GF    

4

2

21

r

mm
GF    )4(

2

21

r

mm
GF   

Means the force is increased by factor 4 

N72)4(18 
 

 

1 2

2


Gm m
F

r
 

r
F

mmF

2

21

1



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1.9.11 EXERCISE 

1. Calculate the acceleration of a car which travels around a circle of: 

a) 50m radius at a constant speed of 54km/hr. 

b) 18m radius at a constant speed of 12m/s. 

 

2. A wheel of radius 20cm has a period of revolution of 0.01 seconds. Find the 

accelerations of a point on the rim of the wheel. 

 

3. Calculate the speed of a car which completes a full circular lap of radius 50m in a 

time of 20 seconds. 

 

4. A 0.40kg mass (m) on a frictionless horizontal table is attached to a weight of 

mass 0.60kg by a string passing through a smooth hole in the centre of the table. 

The mass (P) is moving in a circle about the hole with a uniform speed of 3m/s. 

Calculate the radius of the circular path. 

 

A string 5m long of diameter 2mm just supports a hanging ball without breaking. 

a) If the ball is set to swinging, the string will break. Why? 

b) What diameter string of the same material should be used if the ball travels 

7m/s at the bottom of its swing? 
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5. An engine of mass 4x104kg travels at a constant speed of 8.5 m/s on a level track in the 

form of a circular arc of radius 200m. Calculate the horizontal force exerted by the rails 

on the flanges of the wheel. 

 

6. A car of mass 400kg, moves around a circular roundabout of radius 15m, with a constant 

speed, v. It completes half a revolution in 20 seconds. 

 

i. Calculate the speed of the car. 

ii. Is the car accelerating? Give a reason for your answer. 

iii. Find the force, if any, acting on the car. 

 

7. Calculate the gravitational attraction between two spherical objects (m1 = 20 ×   10 3 kg 
and m2 = 2.0 × 10 4 kg) separated by a distance 0f 4.0 m. 
 

8. Find the force of attraction between the earth and the moon, using the following data: 

 Mass of moon = 7.35×   10 22 kg 
Mass of earth =  5.98  ×   10 24 kg 
Average distance from the earth to the moon =  3.84×   10 8m. 

 

9. A mass of 1.5 kg moves in a circle of radius 25 cm at 2.0 Hz.  
      Calculate: 

i. The velocity. 
ii. The acceleration.  

iii. The centripetal force acting on the mass. 
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CHAPTER 2: ENERGY 
 

 2.1 ENERGY TRANSFORMATION 

2.1.10 WORK 

Work is the process that transfers energy from one form to another. Amount of work 

done dependent on the force involve and the distance through which force act. It is 

defined as the product of force and distance. 

         Work       =        force     ×       distance     (force is parallel to parallel travel) 

     (Joules/Newton meter)      (Newton)            (Meter) 

 

Work is a scalar quantity - Although vectors are used in its calculation, the resulting work 

done no specification direction. 

Example 1  

 For the diagram shown, calculate the work done in moving the body horizontal distance 

in 3m. 

 

Work done = Force x distance.                            

                     = 𝐹𝑥 x d   

                     = 12cos 60 x 3 

                     = 18 Joules. 

2.1.11 POTENTIAL ENERGY (Joules) 

Potential Energy is energy stored in lifting object of mass (m) against gravity a distance 

(m) from one height to a higher one. Energy has been transferred from chemical energy 

in a person body to gravitational potential energy (PE). 

W = F X d 
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Gravitational Potential Energy = mass x gravity x height 

                                                                                    P.E. = m g h   

There is usually some reference level of zero potential energy. Often ground or floor level 

is taken to be at zero potential energy. 

2.1.12 KINETIC ENERGY (Joules) 

Kinetic Energy is energy a body possesses because it’s moving. A body of mass (m) 

moving with velocity (v) has kinetic energy of  

Kinetic Energy = ½ x mass x 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦2 

                                                                       K.E. = ½ m 𝑣2 

When moving object slow down and stop, their kinetic energy is transform into other 

forms of energy. Energy like work is a scalar quantity and the direction of motion does 

not matter. 

Power 

Power (P), is the rate at which work is done, i.e. power measures how quickly energy is 

transferred. Power can be calculated as a rate at which work is done. 

 

     Power = 
𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒

𝑇𝑖𝑚𝑒
 

Where P is the power (Watt), W is work done and T is time. 

2.1.13 ELASTIC POTENTIAL ENERGY 

Hooke’s Law 

Work is done in compressing or stretching a spring. When this done, energy is stored in 

the spring and can be released later. This is known as elastic potential energy. 

Elastic potential energy = 
1

2
 x spring constant x (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑟 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛)2 

                       Elastic P.E. = 
1

2
 k𝑥2 
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A graph of extension force against extension of spring shows a linear relationship. If F is 

the extending force in (N), and x is the extension in m, then 

                        F = kx                 

 

Example 2 

A mass of 0.5kg hung from the end of a spring extends the spring by 25cm. 

a) Calculate the spring constant 

F = mg                                                         F = k x 

   = (0.5) (10)                                           mg = k (0.25)      (25cm = 0.25m) 

   = 5N                                            (0.5) (10) = (0.25) k  

                                                                    k = 
5

0.25
 

                                                                     k = 20N/m 

b) How much elastic potential energy is stored in the spring? 

Elastic P.E. = ½ k 𝑥2 

                     = ½ (20) (0.252) 

                     = 0.63 J 

2.1.14 SPECIFIC HEAT 

1. Heat Energy, (H or Q): is the total amount of energy contained by all the particles 

of the body. 

2. Temperature, (t): is the degree of hotness of a body i.e. is a measure of the 

average kinetic energy of the particles. 

Example 3 

 

1 kg water at 50℃                                                                    10 kg water at 10℃ 

 

 Higher Temperature                                                                Lower Temperature but 

                                                                                                     more heat energy because      

                                                                                                     it has more particles 
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3. Specific Heat Capacity, (c): If the same quantity of heat is supplied to equal 

masses of different substances, different temperature changes occur. 

 

Water          +       10 Joules                                     12℃ 

10℃ 

 

Metal            +       10 Joules                                       20℃ 

10℃ 

 

This difference in bodies is accounted for by the specific heat capacity of the body which 

is: 

 

The Heat Energy required raising the temperature of 1kg of the substance by 1℃ 

 

Example 4 

Specific heat capacity of water = 4200 Joules/kg℃ .i.e. it requires 4200 Joules of energy 

to raise the temperature of 1kg of water by 1℃. 

Q = m c ∆t 

Where Q = Energy absorbed or liberated, m = mass of substance, c = specific heat 

capacity of the substance and ∆t is the change in temperature 

Example 5 

How much energy is required to heat 100gram of water from 10℃ to 15℃ 

m = 100g,  c = 4200 J/kg℃,  ∆t = 15℃ - 10℃ 

     = 0.1kg                                     = 5℃ 

Q = mc∆t = (0.1) x (4200) x (5) = 2100 J 

2.1.15 LATENT HEAT 

Latent Heat, L, of fusion or vaporization of a substance is the amount of energy to change 

the state of 1kg of the substance without changing its temperature. 

Example 6  

Latent heat of fusion of ice = 336000 Joules/kg i.e. it requires 336000 Joules of energy to 

melt 1kg of ice. 

Remember that there is no temperature change during the changes of state, and that the 

energy absorbed or liberated is therefore Potential Energy. 
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Example 7  

Find the amount of energy released when 1gram of steam at 100℃ condenses and cools 

to 20℃. 

                                        Energy = steam             water + water cools 

                                                               At 100℃                  100 ℃         20℃                    

                                        Energy = m L + mc∆t 

                                         Energy = (0.001x250000) + (0.001x4200x80) 

                                         Energy = 2250 + 336 

                                                       = 2586 Joules 

       

2.1.16 CONSERVATION OF ENERGY 

In all situations where work is done, energy is transferred from one form to another. 

Sometimes the energy is transferred into several forms of energy, such as heat, sound 

and light. This means that energy can be created but cannot be destroyed or lost, can 

only be conserved to other forms of energy. 

Example 8 

A body is dropped from a height of 15m.What is its velocity as it reaches the ground. 

 

          

Example 9 

 A bullet of mass 30g is fired with a speed of 400m/s in to a sandbag. The sandbag has a 

mass of 10kg and is suspended by two ropes so that it can swing. What is the maximum 

vertical height, h, that the sandbag rises as it recoils with the bullet embedded inside? 

 

Conservation of Energy 

         Potential Energy = Kinetic Energy 

                                 P.E = K.E 

                              mgh = 
1

2
m𝑣2 

                               2gh = 𝑣2 

                                    v = √2𝑔ℎ  

                                    v = √2𝑥10𝑥15 

                                    v = √300 

                                   v = 17.32m/s 
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Solution: Speed of the sandbag and bullet immediately after the impact can be found by 

applying the idea that momentum is conserved when the bullet embeds itself in the 

sandbag.   

Momentum of the bullet = Momentum of the bullet  

                                                   Before collision                    after collision 

                                                           𝑚1𝑢1 + 𝑚2𝑢2 = ( 𝑚1+ 𝑚2) v 

                                             (0.03 x 400) + (10 x 0) = (0.03 + 10) v 

                                                                               12 = 10.03v 

                                                                                 v = 
12

10.03
 

                                                                                 v = 1.2m/s 

After the collision, the sandbag swings upward by a height (h), and the kinetic energy of 

the sandbag immediately after the collision was transferred to gravitational potential 

energy. At the maximum height of the swing, all the kinetic energy has been transferred 

to gravitational potential energy 

Loss in kinetic energy = gain in gravitational potential energy 

                                                                          
1

2
m𝑣2 = mgh 

                                                     
1

2
 x (10.03) x 1.22 = 10.03 x 10 x h 

                                                                                h = 
7.22

100
 

                                                                                h = 0.072m 

I.e. the sandbag raises a vertical height of 7.2cm. 

 

 

Mass of bullet = 30g 

u = 400 m/s 
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Example 10 

A bunging jumper of mass 75kg jumps off a bridge over a river. The spring constant of the 

rubber bands that make up the bunging rope is adjusted so that the jumper head just 

touches the river at maximum stretch (30m) before springing back up in to the air. If the 

natural length of the rope is 10m, calculate the rope spring constant. Assume no energy 

is lost due to friction.

 

 
https://www.google.com/?gws_rd=ssl#q=bunging+jumper+images 

Solution: 

Conservation of energy, all the jumpers original gravitational potential energy above the 

river level is converted into elastic potential energy when the jumpers reached the river 

level.  

P.E = mgh 

      = 75 x 10 x 30    =  22500 J 

At the river level, the ropes extension from its natural length is: 

                                     x = Stretched length – natural length 

                                     x = 30 – 10 

                                     x = 20m 

Potential Energy = Elastic Potential Energy 

             22500 J = ½ k (𝑥2) 

              22500 = ½ k (202) 

               22500 = ½ k (400) 

               22500 = 200 k 

                        k = 
22500

200
  

                         k = 112.5N/m 

                         k = 110 N/m (2 significant figures) 
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ALBEDO 

When sunlight reaches the Earth’s surface, some 

of it is absorbed and some is reflected. The relative 

amount (ratio) of light that a surface reflects 

compared to the total sunlight that falls on it is 

called albedo. In other words, Albedo is the 

fraction of solar energy (shortwave radiation) 

reflected from the Earth back into space. Surfaces 

that reflect a lot of the light falling on them are 

bright, and they have a high albedo. Surfaces that 

don’t reflect much light are dark, and they have a low albedo.  

Snow has a high albedo, and forests have a low albedo. Water is much more absorbent 

and less reflective. So, if there is a lot of water, more solar radiation is absorbed by the 

ocean than when ice dominates. 

GREENHOUSE EFFECT  

The greenhouse effect is the natural process by which the atmosphere traps some of the 

Sun's energy, warming the Earth enough to support life. Without the greenhouse effect, 

the earth would be much cooler than it is now and life would be difficult.  However, too 

much greenhouse warming could raise global temperatures to a level that is significantly 

different than the current climate. 

 

Joseph Fourier: The greenhouse effect is somewhat similar to the 

process that goes on in a real greenhouse. The original concept of 

the greenhouse effect dates back to 1824 with Joseph Fourier. 

The glass of a greenhouse allows the sun’s radiation in, which 

warms the ground inside, which in turn, warms the air above the 

ground by long-wave (heat) radiation. The glass then acts like a 

barrier to keep the warm air inside from mixing with the cooler 

air outside the greenhouse. 

The greenhouse gases in the atmosphere allow the sun’s short wavelength radiation in, 

and because of the chemical properties of the gases, they do not interact with 

sunlight.  But they do absorb the long-wave radiation from the earth and emit it back into 

the atmosphere, different from a greenhouse which does not allow the long-wave 

radiation to escape through the glass. The increase in trapped energy leads to higher 

temperatures at the earth's surface. This has caused some people to rename the process 

‘the atmospheric greenhouse effect’ or just ‘the greenhouse effect’.  

 

http://www.nc-climate.ncsu.edu/secc_edu/images/Fourier.jpg
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The most abundant greenhouse gases responsible for the greenhouse effect in the 

atmosphere are water vapour, carbon dioxide, methane, nitrous oxide, and ozone. 

The greenhouse effect works 

like this: First, the sun’s 

energy enters the top       of 

the atmosphere as shortwave 

radiation and makes its way 

down to the ground without 

reacting with the greenhouse 

gases. Then the ground, 

clouds, and other earthly 

surfaces absorb this energy 

and release it back towards 

space as long-wave radiation. 

As the long-wave radiation goes up into the atmosphere, it is absorbed by the 

greenhouse gases. The greenhouse gases then emit their radiation (also long-wave), 

which will often keep being absorbed and emitted by various surfaces, even other 

greenhouse gases, until it eventually leaves the atmosphere. Since some of the re-

emitted radiation goes back towards the surface of the earth, it warms up more than it 

would if no greenhouse gases were present. 

What cause the greenhouse effect? 

https://www.powercor.com.au/media/1265/fact-sheet-the-greenhouse-effect.pdf 

Consequences of greenhouse-effect 

The release of GHGs and their increasing concentration in the atmosphere are already 

having an impact on the environment, human health and the economy. These impacts 

are expected to become more severe, unless concerted efforts to reduce emissions are 

undertaken. 

http://www.nc-climate.ncsu.edu/secc_edu/images/GreenhouseEffect.jpg
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Possible solutions 

There are various options available to us to address climate change. Our responses to 

climate change can be broadly split into three categories: adaptation, mitigation, and 

geo-engineering.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Absorption Graph of the Atmosphere 

Generally, the sun emits UV, Visible, and IR and the earth’s atmosphere absorbs UV and 

IR while Visible goes through to the earth’s surface.  

The surface of the earth absorbs Visible and re-radiates it as IR which is absorbed by the 

atmosphere trapping it like greenhouses. Figures 1 and 2 will illustrate the solar spectrum 

and atmospheric absorption graph. 

Figure 1 below shows the energy spectrum for our Sun along with the percent of energy 

radiated by the Sun in the ultraviolet (UV), visible. And infrared portions of 

electromagnetic spectrum.  

Possible solutions 

 

Adaptation  

Means responding to 

the negative impacts of 

climate change. An 

adaptive response to 

this impact would be to 

build sea walls or re-

locate communities. 

Mitigation 

Refer to policies that avoid 

climate change in the first 

place. This is accomplished by 

reducing emissions of 

greenhouse gases, usually 

through policies. 

Geo-engineering 

Refers to active 

manipulation of the climate 

system. Under this 

approach, our society would 

continue adding greenhouse 

gases to the atmosphere, 

but we would intentionally 

change some other aspect of 

the climate in order to 

cancel the warming effects 

of the greenhouse gases.  

Consequences of 

greenhouse-effect 

 

Environmental Impacts 

 Overall average annual 

temperature is expected 

to increase. 

 Rising sea levels and 

increased in coastal 

flooding. 

 Heat waves are likely to 

increase in frequency. 

Economic Impacts 

 Agriculture, forestry 

and tourism affected. 

 Damage to 

infrastructure (e.g., 

roads and bridges). 

 Additional economic 

stress on health and 

social support 

systems. 

 

 Human health impacts 

 Increase the risk of deaths 

from dehydration and 

heat stroke. 

 Risk of water and food. 

 Greater risk of respiratory 

and cardiovascular 

problems. 
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Source: Wikipedia and 

http://faculty.otterbein.edu/utrittmann/IS2403_Activities/ActivityGreenhouse.pdf 

The temperature of the surface of our planet is affected primarily by the energy we 

receive from the Sun that is able to reach Earth’s surface. Figure 2 below shows that 

certain wavelengths of light are absorbed in our atmosphere before they can travel all 

the way to the surface. The dashed lines delimit the visible wavelength.  

 

 

 

 

 

 

 

 

Source: Wikipedia and 

http://faculty.otterbein.edu/utrittmann/IS2403_Activities/ActivityGreenhouse.pdf 

        2.1.17 EXERCISE 

Use specific heat capacity of water as 4.20 x 103Joules/kg℃ 

1. A lump of iron of specific heat capacity 5.03 x 102 J/kg℃ falls from a height of 

220metres. If all the energy it acquires in falling is used to heat it, find its rise in 

temperature. 

 

2. If the energy possessed by a body of mass 50kg moving at a speed of 30m/s is 

used to heat 0.6kg of water, what would be the rise in temperature? 

 

3. After sliding down a vertical pole a distance of 10 meters, a man of mass 70kg has 

a speed of 2 m/s. 

a) How much energy is converted into heat as man slide 10m down the pole? 

http://faculty.otterbein.edu/utrittmann/IS2403_Activities/ActivityGreenhouse.pdf
http://faculty.otterbein.edu/utrittmann/IS2403_Activities/ActivityGreenhouse.pdf
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b) If this energy could be used to heat 100 gram of water, what would be the rise 

in temperature of water? 

 

4. A lump of copper of mass 0.5kg is placed in an oven for some time and then 

transferred to a large dry block of ice at 0℃. 

 

 
5. When the temperature of the copper mass has cooled to 0, it is found that 0.3kg 

of ice has melted. The specific heat capacity of copper is 400 J/kg.K and the heat 

of fusion is 320 kJ/kg. Calculate the temperature of the hot copper mass. 

 

6. A 2 kg mass slide from a height of 2 m on a frictionless surface and compresses a 

spring of force constant 100 N/m on a horizontal plane. 

 

 

 

 

i. What is the speed of the mass just before it compresses the spring? 

ii. How far will the spring be compressed when the mass comes to rest? 
 

7. A spring stretches 10cm when a force of 50N is applied to it. 
i. State Hooke’s law. 

ii. Calculate the value of the spring constant, k, of the spring. 
iii. What will be the extension of the spring when a force of 200N is applied to 

it? 
iv. What amount of elastic potential energy is stored in the spring when 

stretched 10cm? 
 

8. Discuss the possible causes and consequence of Greenhouse effect 

9. Define the term ALBEDO. 

10. Describe evidences of global warming and what are the solutions to this? 
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2.2 HEAT ENERGY 

2.2.10 KINETIC THEORY OF GASES 

 This is a model of ideal or perfect gas based on experimental observations of real gases. 

Below are set of observations on behaviour of gases. 

1. Gases consist of small particles in constant random motion, which are continually 

colliding with each other and the wall of the container. Particles of gas move in irregular 

path. 

2. The size of the particle is negligible in comparison with the total volume of gas. It has 

large spaces between particles that make it easily compressible. 

3. There is no force or interactions between the particles. Therefore gas has no fixed 

volume or shape but occupies the entire volume of its container. 

4. All collisions of the particles amongst themselves and with the wall of the container are 

elastic collision. If they were not then energy would be lost; soon all motion would ceases 

and the particle would settle at the bottom of the container. This was not observed to 

happen. The collision of the particles with the wall of the container is responsible for the 

pressure set up by the gas. 

5. The average Kinetic Energy of the particles is proportional to the temperature. Increases 

the temperature resulted in more movements of the particles. 

2.2.11 BOYLE’S LAW 

Temperature is constant; hence the average kinetic energy of the molecule is constant.  

 

i.e., the average speed of the molecules remains constant. Pressure experienced by a gas 

inside cylinder depends only on the number of molecules collision per unit area of wall 

per second. When the volume is reduced, particles of gas collide with a wall more 

frequently, therefore pressure increase. 

2.2.12 PRESSURE OF IDEAL GAS 

Pressure is the force of particles of gas per unit. Pressure is caused by the particles 

bouncing off the walls. Let the container have N molecules and at any instant assume 

that 1/3 of these are moving in each of the three directions (length, width, and height). 
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Assume all molecules have speed (v). Consider particles moving length- ways, times 

between a particle colliding with a wall  = (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 )/𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  2𝑙/𝑣 

Change in momentum for each collision: 

∆𝑝 = 𝑝𝑓-𝑝𝑖 

 = (m) (-v) - mv 

= -mv-mv 

= -2mv (indicate direction) 

= 2mv 

∴  Force exerted by 1 molecule on the wall: 

=  
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 

𝑡𝑖𝑚𝑒
 

= 

v
l

mv

2

2
 = 

l

mv2

 

 

Since we have 1/3N molecules colliding with the wall then the: 

Total force   = 1/3N 𝑚𝑣2

𝑙 ∗ ℎ ∗ 𝑤⁄  

 

∴  Pressure on this wall = 
𝑡𝑜𝑡𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

𝑎𝑟𝑒𝑎
 

 

                                         P = 
1

3
 N 𝑚𝑣2

𝑙 ∗ ℎ ∗ 𝑤⁄  

P= 
1

3
 
𝑁𝑚𝑣2

𝑙3  

∴   𝑝𝑣 = 
1 

3
𝑁𝑚𝑣2 

 

To correct for the assumption that the entire molecule had the same speed we use the 

average velocity (𝑣̅). Therefore 𝑣2  is called the root- mean – square speed in short. 

 

𝑃𝑉 = 
1

3 
N 𝑚𝑣̅2  r m s speed 𝑣𝑟𝑚𝑠 = √𝑣2 

 

= 
2

3
 (

1

2 
 𝑁𝑚𝑣̅2) Nm = total mass of the gas 

 

= 
2

3 
 (

1

2
 𝑀𝑣̅2) 

 

=
2

3
( 𝐾. 𝐸) 
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 Pressure depends on number of molecules of the gas present. ( P∝ N)  

 
But by the gas equation we know that:   

PV = constant x T 

= 
2

3
 (K.E) 

 

∴  T∝ 𝐾. 𝐸 

  

I.e. we have shown that the temperature is proportional to the average Kinetic Energy of 

the molecules. 

If temperature is constants then kinetic energy is also constant, and so PV= constant, 

which obeys Boyle’s Law  

 

 
2.1.13 CHARLES LAW 

  An increase in the temperature means a rise in the average speed.  

Hence a rise in the number collision per unit area per second. To keep pressure 

constant we must therefore increase the volume so that the faster moving particles 

have greater distance, so rate of collision does not change then the pressure must 

increase if the temperature increases.   

 

 

 

 

 

 

Volume is proportional to temperature at constant pressure (V ∝ T let P constant) 
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2.1.14 IDEAL GAS LAW 

When all laws are combined together it gives gas law  

 

2

22

1

11

T

VP

T

VP
  

 

The absolute pressure (P) of an ideal gas is proportional to the Kelvin temperature (T) and 

the number of moles (n) of the gas and inversely proportional to the volume (V) of the 

gas:  

 

Example 1  

PV = nRT where R = universal gas constant 8.31J, n= number of moles. 

  

A certain mass of gas occupies a volume of 350𝑐𝑚3 at a pressure of 76cm of mercury. 

What will be its volume when the pressure is reducing to 73cm? 
𝑃1 𝑉1

𝑇1
 = 

𝑃2 𝑉2

𝑇2
 

 
𝑃1 𝑉1= 𝑃2 𝑉2 
 
(76) (350) = (73) 𝑉2  
 

𝑉2 = 
(76)(350)

73
 

 

𝑉2 = 364.4 𝑐𝑚3 

 

2.1.15 EXERCISE  

1. 100𝑐𝑚3 of air at atmospheric pressure ( 105 𝑁/𝑚2) is contained in a syringe. If the 

volume is changed  at a constant temperature what is the new pressure when the 

volume is: 

a) 45𝑐𝑚3 

b) 25𝑐𝑚3 

 

2. If the piston of a cylinder containing 360𝑐𝑚3 of gas at atmospheric pressure 

(105𝑁/𝑚2) moves outwards so that the pressure falls to 8× 104𝑁/𝑚2. Find the 

volume of the gas if the temperature remains constant. 

 

3. A certain mass of oxygen has a volume of 5𝑚3 at 27℃. If the pressures remain 

constant, what will be its volume at 77℃ . 
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4. At the end of a trip, a driver adjusts the absolute temperature in her tires to be 

2.81× 105 𝑃𝑎. When the outdoor temperature is 284K. At the end of her trip she 

measures the pressure to be 3.10× 105 𝑃𝑎. Ignoring the expansion of the tires, 

find the air temperature inside the tires at the end of the trip. 

 

5. In a portable oxygen system, the oxygen (𝑂2) is contained in the cylinder whose 

volume is 0.0028𝑐𝑚3. A full cylinder has an absolute pressure of 1.5×

 105𝑃𝑎 when the temperature is 296K.  

Find the mass (in kg) in the cylinder. 

 

6. A car tire, of volume 250𝑐𝑚3 is filled to an absolute pressure of 280kPa at 270℃. 

After driving some distance, the temperature of the air inside the tire rises to 

57℃. Assume that the pressure inside the tire remains the same. What is the new 

volume of the tire? 

 

7. Neon gas in a container was heated from 20 °C to 120 °C. Its new volume is 
150ml. What was the original volume? 

 
8. 17˚C a gas occupies a volume of 0.5 litres. The gas is then heated to a 

temperature of 27˚C. 

i. Calculate the new volume of the gas. 
ii. Sketch a suitable graph showing the relationship between volume and 

temperature (˚C) of a gas whose pressure is unchanged. 
 
9. A certain mass of oxygen of  5m3 at 27℃. If the pressure remains constant, what 

will be its volume at 77℃. 
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CHAPTER 3: FLUIDS 
 
Fluid Mechanics is the study of fluids either in motion (FLUID DYNAMICS) or at rest 
(FLUID STATICS). Fluids refer to substances that deforms continuously under the action of 
shear stress. Fluids are either gas or liquid. Solids are NOT fluids. Solids can resist a shear 
stress, fluids can’t. 
 

3.1 PROPERTIES OF FLUIDS 
 
Bernoulli’s principle 
In 1738, the Swiss mathematician Daniel Bernoulli made a surprising discovery. It has 
become known as BERNOULLI'S PRINCIPLE.  
 
Bernoulli found that as the speed of a gas or liquid increases, its pressure drops. This 
means that air rushing over a surface, for example, pushes against the surface less than if 
the air were still.  
 
“ The Bernoulli principle states that the pressure in a fast moving stream of air is lower 
than in a slower stream of air.’’ 
That is, fast air will produce low pressure and slow moving air will produce high pressure. 
 
3.1.10 APPLICATIONS 
 
I. Aeroplane wings 
 
An aircraft wing, called an aerofoil, is shaped so that the air has to travel farther and so 
faster over the top surface than underneath 

 
http://spmphysics.onlinetuition.com.my/2013/06/application-of-bernoullis-principle.html 

 
1. When a wing in the form of an aerofoil moves in air, the flow of air over the top 

travels faster and creates a region of low pressure. The flow of air below the wing 
is slower resulting in a region of higher pressure.  
 

2. The difference between the pressures at the top and underside of the wing 
causes a net upward force, called lift, which helps the plane to take-off.  
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II. Venturi meter 
Venturi tube, an instrument for measuring the drop in pressure that takes place as the 
velocity of a fluid increases. It consists of a glass tube with an inward-sloping area in the 
middle, and manometers, devices for measuring pressure, at three places: the entrance, 
the point of constriction, and the exit. The Venturi meter provided a consistent means of 
demonstrating Bernoulli's principle. 
A flow of air through a venturi meter, showing the columns connected in a U-shape 

(a manometer )and partially filled with water. The meter is "read" as a differential 

pressure head in cm or inches of water. 

 
 

https://www.scribd.com/doc/104586852/Bernoulli-Theorem 

 
The pressure at "1" is higher than at "2" because the fluid speed at "1" is lower than at 
"2". 
 
III. Atomizer 
Bernoulli’s principle can help you understand how the perfume atomizer shown in the 
figure below works.  
 

 

Perfume Atomizer An atomizer is an application of Bernoulli’s principle. 

http://mycampus.nationalhighschool.com/doc/sc/Physical%20Science/iText/products/0-13-190327-

6/ch11/ch11_s4_2.html 

When you squeeze the rubber bulb, air moves quickly past the top of the tube. The 
moving air lowers the pressure at the top of the tube. The greater pressure in the flask 
pushes the liquid up into the tube. The air stream breaks the liquid into small drops, and 
the liquid comes out as a fine mist.  

1 2 1 

http://en.wikipedia.org/wiki/Venturi_meter
http://en.wikipedia.org/wiki/Venturi_meter
http://en.wikipedia.org/wiki/Manometer
http://en.wikipedia.org/wiki/Manometer
http://en.wikipedia.org/wiki/Manometer
http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Fluid
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3.1.11 VISCOSITY 
 
 
 
 
 
 
 
 
 

 
http://www.syntheticlubricants.ca/english/view.asp?x=968 

 
Every type of fluid possesses differing amounts of resistances against deformation. The 
measure of that resistance is called viscosity. Viscosity expresses the fluid’s resistance 
against either tensional stress, or shear stress. 
 

In common terms, viscosity is how “thick” a fluid is. For example, we can easily move 
through air. It is more difficult to move through water which is 50 times higher viscosity 
than air. In other words, the thicker the fluid is, the higher the viscosity. 
 

Viscosity can be viewed in two different ways.   The first is a fluid’s tendency to flow as is 
visually indicated.   One can think of this as the time it takes to watch a fluid pour out of a 
container.   The term used to describe this is Kinematic Viscosity and it is expressed in 
units indicating flow volume over a period of time. 
 

Dynamic viscosity, also called absolute viscosity, is the more commonly used 
measurement. It measures the resistance of a fluid to flow — in other words, the internal 
friction of the fluid, or how easily it can deform under mechanical stress at a given 
temperature and pressure.  
 

Dynamic and kinematic viscosity is expressed in different units of measurement. The 
International System of Units (SI) measurement units for dynamic viscosity are pascal-
seconds. Pascal’s are a measurement of pressure — in this case, the shear stress applied 
to the liquid — while seconds measure the time it takes to deform. Dynamic viscosity can 
also be measured with a unit called the poise, another measure relating pressure versus 
time. The common unit used to measure kinematic viscosity is the stokes, or square 
centimetres per second, although sometimes the SI unit of square meters per second is 
used. 

 

3.2 STATICS FLUIDS 
 
3.2.10 BOYLE'S LAW 
 
The relationship between volume and pressure when temperature is held constant 
shows an inverse relationship. 
 
 
 

http://www.wisegeek.com/what-is-dynamic-viscosity.htm
http://www.wisegeek.com/what-is-absolute-viscosity.htm
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The graph shows an inverse relationship between volume, V and pressure, P. 
    

 
This is known as Boyle's Law and can be written: 
 

V
P

1
  (Temperature constant) 

 
Mathematically, when solving problems, the relationship is written: 
 

P1V1 = P2 V2 
 
Where     P1:is the initial pressure,  V1:is the initial volume 
    P2:is the final pressure,  V2:is the final volume 
 
Example: An amount of air at atmospheric pressure (105 Pa) is contained inside a bicycle 
pump with its nozzle sealed. The volume of the air is 12 cm3. What is the pressure of the air 
inside the pump if the handle is pulled out to a volume of 24 cm3? 
 
Solution: Initially the pressure (P1) is 105 Pa and the volume, V1 is 12 cm3. After the 
handle is pulled out, the new volume, V2, is 24 cm3. Calculate the pressure required, P2.  

P1V1 = P2 V2 
  105 × 12 = P2 ×  2 [substituting] 
 
                             P2 = 105 × 12      [rearranging]  
                24 
 
  =  5.0 x 104 Pa 
 
 

3.2.11 GAUGE PRESSURE AND ATMOSPHERIC PRESSURE 
 
Atmospheric pressure is the force per unit area exerted by the weight of the column of 
air above a measuring point. Atmospheric pressure is around 1 atmosphere at sea level 
but its value fluctuates. Pressure can be expressed in various units. The unit factors for 
converting one sets of unit to another are shown below: 
 

1atm = 1.01325  105 Pa 
1atm = 760 mmHg 
1atm = 1.01325 Bar 
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Gauge pressure is the pressure measured by a gauge. This device measures the pressure 
relative to the atmospheric pressure i.e. it is calibrated against the atmospheric pressure. 
Total (or Absolute Pressure) = P GAUGE + P ATMOSPHERE  
 
For Pressure in a uniform fluid: 
The gauge pressure at a particular depth is directly proportional to …  

 the density of the fluid , 

 the acceleration due to gravity g, and 

 the depth h. 
 
Thus, the absolute pressure in a uniform fluid at a particular depth is given by … 
 

P TOTAL = P ATMOSPHERE + gh 
 
Example 1 
A diver in the ocean measures gauge pressure to be 515 kPa. What is the absolute 
pressure? 
 

P  =  PA  +  PG 
 P = 101 kPa  +  515 kPa 
 P = 616 kPa 
 

Example 2 
What is the absolute pressure at the bottom of the swimming pool whose depth is 2 m? 
 

P =  PA  +  PG 

P = PA  +  gh 
 P = 101300 Pa + (1000 kg/m3)(9.8 m/s2)(2 m) 

 P = 120900 Pa = 1.209  105
 Pa. 

 
EXERCISE 

1. The hydrogen balloons which are used to collect weather information from the 

atmosphere is made of plastic and never completely filled. Thus the pressure 

inside and outside are same. The balloon is filled with 150 litres of hydrogen, the 

air temperature is 27°C and the atmospheric pressure is 98 kPa. The balloon rises 

to a height where it radios back that the pressure is 30kPa and the temperature is -

33°C. 

i. What is the Kelvin temperature equivalent to -33°C? 
ii. What is the volume of hydrogen at this height? 

 

2. State Bernoulli’s Principle. 
 

3. Draw the flow of air over this wing. Label where there is low pressure and high 
pressure caused by Bernoulli’s Principle. 
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           CHAPTER 4: GEOMETRICAL OPTICS AND WAVE MOTION 
 

4.1 LIGHT 

Light is an electromagnetic wave or electromagnetic radiation that travels near a speed 

of 3×108m/s. Other forms of electromagnetic radiation is x-rays, gamma rays, short and 

long radio waves, light travels in a straight lines sometimes referred as straight line 

propagation. 

4.1.10 REFLECTIONS OF LIGHT 

When light reaches mirror or surfaced that is well polished it get reflected. 

 

Laws of reflection 

1. Angle of incidence = the angle of reflection. 

                                      θ1= θ2    or   î = r̂    

2. Incident ray, reflected rays and normal all lie in the same plane. 

3. Normal is the line perpendicular to the plane and to the surface at the point 

where incident and reflected ray meet. 

4. Angle of incident and angle of reflection is always measured towards the normal. 

 

4.1.11 REFRACTION  

The bending of light as it passes from one medium to another. The cause of light bending 

or changed direction is the change of its velocity.  

Laws of Refraction: 

1. The incident ray, refracted ray and the planar are co-planar. 

2. Angle of incident and refracted angle are measured towards the normal. 

 

When light travels from less dense material to more dense the refracted ray bend 

towards the normal 
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Source: http://qap.everythingmaths.co.za/science/grade-11/05-geometrical-optics/05-

geometrical-optics-07.cnxmlplus 

When light travels from more dense to less dense the refracted ray bend away 

from normal. 

 
 

Snell’s law determines the amount that light is bending or refraction. 

 

 

Example: 

Calculate the angle of refraction for light travelling from air (𝑛𝑎=1.0) into glass (ng=1.5) if 

the angle of incidence is 35𝑜.  
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𝑛1 sin 𝜃1=𝑛2
sin 𝜃2 

1.0sin 35 = 1.5 sin 𝜃2 

∴ sin 𝜃2=0.3824 

𝜃2=22.5 

 

4.1.12 CRITICAL ANGLE 

Critical angle is the angle of incidence which gives an angle of refraction of 90°. This only 

happens if the ray of incident is moving from more dense substance to less dense. 

 

4.1.13 TOTAL INTERNAL REFLECTION 

Total internal reflection happens when reflection 

occur within the material. Angle of incidence is 

greater than the critical angle. It means no light is 

refracted into the less dense substance. Formation 

of mirages and apparent pools of water on 

bitumen roads in hot weather is caused by total 

internal reflection of light in the layers of hot air 

just above the ground. 

Different substance (transparent material) has different refractive index.  

Substance n Substance n 

diamond 2.24 Paraffin oil 1.44 

Ruby 1.76 Ethanol 1.36 

Flint glass 1.65 Water 1.33 

Crown glass 1.52 Ice 1.31 

Perspex 1.49 Air 1.00 

Relative refractive index for two media is the ratio 
sin 𝑖

sin 𝑟
 for light going from one substance 

into the other.  

𝑛12 = 
sin 𝑖

sin 𝑟
 =  

𝑛2

𝑛1
 

n

n
c

1

2
sin 
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The summary formula is: 

 

 

4.1.14 PARTICLES MODEL OF LIGHT. 

Light is a stream of particles called photons travelling at a very high speed. This 

can account for way of light form sharp shadows and how two beams can cross 

each other without apparent interaction. 

 

Moving Particles of light also obeys law of reflection. 

 

Particle model also explain the law of refraction .Example roll a ball down two connecting 

ramps of different slope.  

 

n

n

v

v
n

1

2

2

1

2

1

2

1
12

sin

sin








  
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But the particle model requires the velocity to increase in the denser medium (i.e. when 

ray bends towards the normal). 

Model correctly predicts an inverse square law of intensity or illumination. It predicts 

that a substance which absorbs light is heated and experiment shows this to be true. 

But particle model of light does not satisfactorily explain the following: 

1. The existence of partial reflection and refraction at a boundary between two medium. 

 
2. Diffraction- The bending of light around objects 

 

3. The speed of light in water when measured by Foucault was found to be lower than the 

speed of light in air, particle theory predicting it should be greater. 
 

4. Interference – how two beams of light incident on the screen and produce bright and 

dark band. 
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4.1.15 EXERCISE: LIGHT 

1. A ray of light travels from air to glass of refractive index 1.5. If the angle of 

refraction is 40°, find the angle of incidence. 
 

2. A ray of light travelling from air to water has an angle of incidence of 60° . Find 

the angle of refraction. 
 

3. A ray of light travelling from toluene to air has an angle of incidence of 27o and an 

angle of refraction of 42°. What is the refractive index of toluene 
 

4. Find the critical angle for the water/air surface.(n for water = 1.33) 
 

5. The critical angle for an oil/air surface is 40°. What is the refractive index for oil? 
 

6. Water (refractive index 1.33) is placed upon a block of glass of refractive index 

1.5. What is the critical angle for light passing from the glass to the water? 
 

7. A ray of light travels from air into glass as shown below: 

 

 

 

 

 

 

8. Diamond has a refractive index of 2.4. If the speed of light in air is 3 x 108m/s, 
calculate the speed of light in diamond 
 

4.2 WAVES 
 

Wave motion is all happening around us. Some are mechanical waves like sand waves, 

small earthquakes, and vibration passing through a solid that require a material medium 

in which to travel.  

Other electromagnetic waves such as radio waves and light are produced when electrons 

are made to accelerate or when electron change energy level in an atom. These type of 

waves travel through vacuums, i.e. they do not need a medium. 

4.2.10 REFLECTIONS AND TRANSMISSION OF WAVES: 
 

When waves move from one medium to another, some of the waves are reflected. Type 

of reflection of waves depends on the type of medium it travels through for example; 

moving from a slow medium to a fast medium or the other way around. 
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 (a) Heavy to Light String: 

A pulse (or wave) on a heavy 

string moves towards a lighter 

string. The pulse moves slower 

along the heavy string and 

faster along the lighter string. 

Small reflected pulse the same 

way up as the original pulse 

moves back along the heavy 

string.  

 

 

 

 

 

 (b) Light to Heavy String: 

A pulse on a light string 

moves towards a heavy 

string. A small reflected pulse 

upside down to the original 

pulse moves back along the 

light string. 

 

 

 

                              

 

Amplitude of the reflected and transmitted waves are less, showing loss of energy. The 

pulse in the lighter string is further from the boundary, as they are travelling faster.  
 

(c) Velocity of wave on a string does not depend on the amplitude of the waves. It depends 

on the tension in the string. 

Similarly the velocity of light does not depend on the intensity of the light and intensity 

is related to amplitude in waves. 
 
 

(d) Superposition: 

Superposition is the ability of waves to add their displacements and their energy at each 

position with respect to time. 
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Constructive superposition refers to two waves of same amplitude meet then we get 

a resultant displacement of twice the amplitude where waves overlap. 

 

 

4.2.11 INTERFERENCE 

Interference pattern happens when two waves of equal amplitude and velocity moving in 

opposite direction overlap each other. 

 
When crest from one wave meets a trough from another wave, this is known as 

destructive interference. 

 

Constructive Interference: 

Constructive interference happens when crest from one wave  meet a crest from another 

wave or trough meets a trough. 

 As the trough and crest move away from the source, the continuous series of points 

appear, forming undisturbed lines of points appear, forming undisturbed lines of water. 

These lines are called nodal lines. Antinodes line form from when a crest meets a crest or 

trough meets a trough from two waves form. 

 

 

In laboratory, a ripple tank is used to study waves. 
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http://spmphysics.onlinetuition.com.my/2013/07/phenomena-of-waves.html 

Experiments done in the ripple tank show that water waves behave like light waves. 

4.2.12 REFLECTIONS 

Waves are reflected off barriers, obeying the same laws of reflection as light. Note that 

the angle of incidence equals the angle of reflection. 

 

 

 

               Flat waves hitting circular barrier  

 

 

 

 

 

 

 

 

 

Circular waves hitting flat and circular barriers 
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4.2.13 REFRACTION 

When water waves pass between a deep region and a shallow region they obey the law 

of refraction. In the shallow region the waves velocity decrease (wavelength decrease 

and since velocity = frequency x wavelength, velocity decrease since frequency remains 

constant) 
 

Waves obey Snell’s law. 
 

 

 
 

Example:  

Water waves travelling at 5.0 cm/s and with a wavelength of 2.0cm are incident from 

deep water to shallow water as shown in the diagram. 

 

A). Determine the relative refractive index. 

𝑛12= 
sin 𝜃1

sin 𝜃2
 

 

= 
sin 45

sin 30
 

= 1.41cm 

 

b). Determine the speed of the waves in the shallow water. 
sin 𝜃1

sin 𝜃2
 = 

𝑣1

𝑣2
 

 
sin 45

sin 30
 = 

5

𝑣2
 

∴ 

𝑣2=
5.0 sin 30

sin 45
 

 

𝑣2=3.54cm/s 

n

n

v

v

1

2

2

1

2

1

2

1

sin

sin








  
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c). Determine the frequency of the wave. (in water, the frequency of the wave always be 

constant. It will have same frequency in deep and shallow region). 

 

Velocity = frequency x wavelength 

          5 = frequency x 2 

Frequency = 
5

2
 

            f = 2.5Hz 
 

Partial Reflection and Refraction: 

When waves travel from deep region to shallow region at the boundary, partial reflection 

and refraction happens to the incident rays. 
 

4.2.14 DIFFRACTION: 

When water waves passes through a narrow gap is equal or less than the wavelength of 

the incident wave. If the width of the gap is greater than the wavelength of the incident 

waves, the effect of the diffraction will be very small. 

 

   
 

All the above properties are properties that light shows and so strongly suggests that 

light is in wave form. 

 

1.2.15 WAVE MODEL OF LIGHT. 

The particle model of light fails to explain two important facts which are known about 

light. 

When light passes from one medium (such as air) to another (such as glass) some light if 

reflected and some refracted into the second medium. 

When light passes from an optically less dense medium (such as air) to an optically 

denser medium (such as glass) the speed of light decreases. 

Both of the above difficulties can be explained if light is considered to be a wave motion. 

The wave model of light describes light as consisting of waves with a very small wave 

length and travelling in straight lines forms source with a very large speed. 
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Interference of Light: 

In 1810, Thomas Young demonstrated that light passing through two small holes very 

close together diffracts and forms an interference pattern 

When two waves from individual slit overlap each other and arrive at a particular point at 

the same time (in phase) it forms Antinodes (Bright Band). It is the result of constructive 

interference. 

 

When two waves arrive at a particular point not at the same time out of phase) it forms 

Nodes (dark band). It’s the result of destructive interference. 

 

Formation of Nodes and Antinodes is determined by path difference travelled by the two 

waves.  

 

 

 

If S1P – S2P= nλ   where n= 0,1,2,3,……  

Path difference = whole number of wavelength we get Antinode or Constructive 

interference. 

But if S1P - S2P= ½ , 1½ ,………= (n-½)λ 

Where n= 1, 2,3, ……. 

Path difference = half wavelength difference then the waves arrive out of phase and so 

we get Nodes or Destructive Interference. 
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Young’s Experiment: 

 

In Young’s Interferometer the monochromatic light (light of one colour) from the source 

is divided into two parts using double slit arrangement. 

The distance used to determine interference Light source to double slits: 20 – 100cm 

Slit to screen: 1 – 5 meters 

Slit width: 0.1 – 0.2 mm 

distance between slits: less than 1mm. 

Path difference = d sin  and since the angle are small then  tansin   

 We get Constructive Interference if: 

 

d sin 𝜃 = n λ = 
𝑥𝑑

𝐿
 

 

 

And Destructive Interference 

 

d sin 𝜃 = (n- ½) λ= 
𝑥𝑑

𝐿
 

 

Example: 

Find the position of the First bright band from the central bright band if n=1 , d=1mm, 

L=2m and  wavelength =10-6 m 

n λ= 
𝑥𝑑

𝐿
 

 

(1) (10−6) = x .1 x 10−3/2 

 

X = 2 x 10−3m 
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The electromagnetic spectrum 

Radio waves, microwaves, visible light, and x-rays are familiar kinds of electromagnetic 

waves. All of these waves have characteristic wavelengths and frequencies. Wavelength 

is measured in meters. It describes the length of one complete oscillation. Frequency 

describes the number of complete oscillations per second. It is measured in hertz, which 

is another way of saying “cycles per second.” The higher the wave’s frequency, the more 

energy it carries. 

 
 

Frequency, wavelength, and speed 

In a vacuum, all electromagnetic waves travel at the same speed: 83×10 m/s . This 

quantity is often called “the speed of light” but it really refers to the speed of all 

electromagnetic waves, not just visible light. It is such an important quantity in physics 

that it has its own symbol, c. 

 

The speed of light is related to frequency f and wavelength λ  by the formula given below.  

 
 

 

 

 

 

 

The different colours of light that we see correspond to different frequencies. The 

frequency of red light is lower than the frequency of blue light. Because the speed of 

both kinds of light is the same, a lower frequency wave has a longer wavelength. A higher 

frequency wave has a shorter wavelength. Therefore, red light’s wavelength is longer 

than blue light’s. 
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4.2.16 EXERCISE WAVES 

1. A waves travels along a piece of rope. The source of vibration S is on the left. 

                           

a) State the name given to the distance between positions R and V. 

b) Which direction will position V move in at the instant shown? 

 

2. Copy and complete the table using the formula 𝑣 = 𝑓𝛾 

Speed 
(𝒎|𝒔) 

Frequency 
 (Hz) 

Wavelength 
(m) 

 20 3 

330 100  

3x𝟏𝟎𝟖 1x𝟏𝟎𝟔  

3x𝟏𝟎𝟖  150 
 

3. Wave fronts are seen to cross a boundary from deep to shallow water as shown 

below. The arrow shows the direction of the waves as they move from deep 

water to shallow water. 

 

Use the information in the diagram above to answer the questions that follow. 

i. Determine the wavelength of the waves in deep water  

ii. Calculate  the frequency of the waves in deep water 

iii. Find the velocity of the waves in shallow water 
 

 

 

 

 

deep water 
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4. The interference fringe pattern formed on a screen in a 

Young Double Slit experiment is shown in the figure below. 

 The screen is located 2.0m from the double slit. The slits 

are separated by a distance of 1.0mm. 

i. Calculate the wavelength of the light? 

ii. What would happen to the interference fringe pattern if the slits were moved 

closer to the screen?   

iii. Why does this experiment support the wave model of light rather than the 

particle model?  
 

5. In a Young’s double slit experiment, the monochromatic light used is of wavelength 

600 nm. 

i. If the distance between the two slits is 0.50 mm and the screen distance 

from the double slit is 0.75 m, calculate the distance of the third bright 

band from the central maximum. 

ii. What is the path difference of the light from the double slits to the second 

dark band? 
 

6. Plane waves of frequency 5Hz in a ripple tank pass from one depth of water into 

another across a boundary.  

 
a) Label depth 1 and depth 2 as shallow or deep region. 

b) What is the wavelength of waves in Depth 1? 

c) Calculate the speed of waves in depth 1. 
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7. The set up shown below is used to obtain an interference pattern on a screen 3.5m 

away from the slit. The slit separation is 2 

mm. 

 
i. Explain the purpose of the blue filter 

in the above set up? 

ii. A bright band is formed at P. Briefly 

explain how a bright band is formed? 

iii. If the distance between O and P is 

0.0012 m, calculate the wavelength of 

blue light? 

iv. Calculate the angle of, at Q (second bright fringe) from the centre of the slits. 

 
 

8. Two speakers placed 0.5 m apart are connected to a source of sound waves of 

frequency 500 Hz. Take the speed of sound as 340 m/s. 

 
i. Calculate the wavelength of the sound. 

ii. Calculate the angle θ at which the point P is found. 

iii. Along the line XY in front of the speakers a series of loud and faint sound can be 

heard. State ONE way in which the distance between the loud sounds along the line 

can be decreased. 
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CHAPTER 5: ELECTRICITY 

5.1 ELECTROSTATICS 

Electrostatics is the study of electric charges, forces, and fields. The symbol for 
electric charge is the letter “q” and the SI unit for charge is the coulomb (C). The 
coulomb is a very large unit. 

1 C = 6.25  1018 electrons or 

1 electron has a charge of 1.60  10-19 C 
 
5.1.10 COULOMBS LAW 
The electrostatic force was first studied in detail by Charles Coulomb around 1784. 
According to his observations he was able to show that two charged objects 
attract each other with a force that is proportional to the charge on the objects 
and inversely proportional to the square of the distance between them. 
 

F
 


 

2

21

r

qq

 
 
where    

q1  is the charge on the one point-like object(C),  
q2  is the charge on the second,(C),  
r  is the distance between the two (m) and 
F  is the magnitude of the electrostatic force between two point-like 

charges (N). 
 
To make an equation out of this proportionality, a quantity called the electrostatic 
constant, k is inserted.  

k = 9  109 N.m2C-2. 
 
The magnitude of Coulomb’s law can now be written as an equation: 

Electrostatic force = 
2)tan(

)2arg)(1arg)((

cedis

eCheChK ticselectrosta  

 

 
http://www.aplusphysics.com/courses/honors/estat/Coulomb.html 

 
EXAMPLE 

Two point-like charges carrying charges of +3  10-9 C and -5 × 10-9 C are 2 m apart. 
Determine the magnitude of the force between them and state whether it is attractive or 
repulsive. 
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Given: q1 = +3 × 10-9 C 

q2 = -5 × 10-9 C 

r = 2 m 
 

 
Using Coulomb’s Law we have 
 

2

21

r

qKq
F    = 

2

99229

)2(

)105)(103)(109(

m

CCCNm  
  = N81037.3   

 

Thus, the magnitude of the force is N81037.3  . However since both point charges have 
opposite signs, the force will be attractive. 
 
EXAMPLE 
 
Determine the electrostatic force and gravitational force between two electrons 10-10 m 
apart (i.e. the forces felt inside an atom). 
 
Soln: We are required to calculate the electrostatic and gravitational forces between two 
electrons, a given distance apart. 
We can use: 

2

21

r

qKq
Fe   to calculate the electrostatic force and 

2

21

r

mGm
Fg   to calculate the 

gravitational force. 
 

 Given:  q1 = q2 = 1.6  10-19 C (charge of an electron) 

   m1 = m2 = 9.1  10-31 kg (mass of an electron) 

   r = 1  10-10 m 
 

K = 9  109 Nm2C-2 

G = 6.67  10-11 Nm2kg-2 
 

We can draw a diagram of the situation. 

 
 
Electrostatic Force: 
 

2

21

r

qKq
Fe   = 

210

1919229

)101(

)106.1)(106.1)(109(

m

CCCNm







= N8103.2   

Hence the magnitude of the electrostatic force between the electrons is N8103.2  . 

Since electrons carry the same charge, the force is repulsive. 
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Gravitational Force: 
 

2

21

r

mGm
Fg   = 

2

31312211

)101(

)101.9)(101.9)(1067.6(

m

kgkgkgNm



 

= N511054.5   

 
5.1.11 ELECTRIC FIELD  
Electric Field is an area of influence around a charged object. The magnitude of the field 
is proportional to the amount of electrical force exerted on a positive test charge placed 
at a given point in the field. 

q

F
E   

 Where  E = Electric Field (N/C) 
   F = Electrostatic Force (N) 
   q = Test Charge (C) 
 
The SI unit of electric field is the newton per coulomb (N/C). 
 
FIELD NEAR A POINT CHARGE 
A point charge has around it a radial electric field. If the charge is positive the field is 
directed away from the charge. If the charge is negative the field is directed towards the 
charge. 

 
http://physics.appstate.edu/laboratory/quick-guides/electric-fields 

 
For a point charge (or other spherical charge distribution), the magnitude of the electric 
field can be written as 

22

00 r

kq

rq

qkq

q

F
E o   

 
 

        Q   r    Target 
 

That is   2r

kq
E 

 

 

q
o

 

http://physics.appstate.edu/laboratory/quick-guides/electric-fields
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Where    
q  is the charge on the surface of the object (C), and  
r  is the distance between the centre of the charged object and a small positive test 

charge, q0, placed in the field (E). 
 

EXAMPLE 
Shirley pulls her wool sweater over her head, which charges her body as the sweater rubs 
against her cotton shirt.  
(a) What is the electric field at a location where a 1.60  10-19 C - piece of lint 

experiences a force of 3.2  10-9 N as it floats near Shirley? 
(b) What will happen if Shirley now touches a conductor such as a door knob? 
 
Soln:  

a). 
C

N

Q

F
E

19

9

106.1

102.3







  = 2  1010 N/C 

 
b) She will reduce her charge in a process called grounding, in which excess 

electrons flow from her body into the ground and spread evenly over the surface 
of Earth. 

 
EXAMPLE 

A fly accumulates 3.0  10-10C of positive charge as it flies through the air. What is the 
magnitude and direction of the electric field at a location 2.0 cm away from the fly? 
 

2

10229

2 )020.0(

)100.3)(100.9(

m

CCNm

r

kq
E

 
  =  6800 N/C away from the fly.  

 
EXAMPLE 
 

Two charges of Q1 = +3 nC(3  109C) and Q2 = -4 nC(-4  109C) are separated by a distance 
of 40 cm. What is the electric field strength at a point that is 10 cm from Q1 and 30 cm 
from Q2? The point lies between Q1 and Q2. 
 

 
 

Given: Q1 = 3  10-9C 

 Q2 = -4  10-9C 
 R1 = 0.1 m 
 R2 = 0.3 m 
What is required: calculate the electric field, E at x : 
 

We will use the equation: 
2r

kq
E 
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We need to work out the electric field for each charge separately and then add them to 
get the resultant field. 

Step 1: first solve for Q1: CN
m

CCNm

r

kq
E /2700

)10.0(

)100.3)(100.9(
2

9229

2







  
 

Step2: solve for Q2: CN
m

CCNm

r

kq
E /400

)30.0(

)100.4)(100.9(
2

9229

2







 
 

 
Step 2: We need to add the two electric field because both are in the same direction. The 
field is away from Q1 and towards Q2. Therefore, 
 ETOTAL = 2700 N/C + 400 N/C = 3100 N/C 
   
ELECTRIC POTENTIAL ENERGY 
 
Potential Reference at Infinity 

The general expression for the electric potential as a result of a point charge Q can be 
obtained by referencing to a zero of potential at infinity. The expression for the potential 
difference is:  

 Taking the limit as rb→ gives simply 

 

For any arbitrary value of r. The choice of 
potential equal to zero at infinity is an arbitrary 
one, but is logical in this case because the 
electric field and force approach zero there. The 
electric potential energy for a charge q at r is 

then    
r

QkQ
E electricp

21
)(   

Where k is Coulomb's constant. 

The electric potential energy of a charge is the energy it has because of its position 
relative to other charges that it interacts with. The potential energy of a charge Q1 
relative to a charge Q2 a distance r away is calculated by: 

r

QkQ
E electricp

21
)( 

 

EXAMPLE 
What is the electric potential energy of a 7 nC charge that is 2 cm from a 20 nC ? 

Given: Q1 = 7  10-9 C 

 Q2 = 20  10-9C 
 R = 0.02 m 
What is required: Electric potential energy, Ep 
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We will use the equation: 
)02.0(

)1020)(107)(109( 99229
21

)(
m

CCCNm

r

QkQ
E electricp

 
  

 

    Ep(electric) = 6.3  10-5 J 

  
ELECTRICAL POTENTIAL DIFFERENCE 
Potential Difference refers to the work done to move a positive test charge from one 
location to another. 

Potential Difference = 
eChTest

Work

arg
  or  q

W
V 

 

 
The SI unit for potential difference is the volt (V), which equals a joule per coulomb (J/C). 
 
RECALL, the term “work” can be replaced with the term “electric potential energy,” since 
to store energy in, or give energy to, an object, work must be done. Therefore, potential 
difference can also be defined as the electrical potential energy per unit test charge. 
Voltage is often used to mean potential difference. 
 
EXAMPLE 
What is the potential difference between two points in an electric field if it takes 600 J of 
energy to move a charge of 2 C between these two points? 
 
Given: W = 600 J 
 Q = 2 C 
Find: Potential difference, V: 
 

We use 
C

J

Q

W
V

2

600
   VV 300  

EXAMPLE 
An electron in Akeneta’s TV is accelerated toward the screen across a potential 
difference of 22 000 V. How much kinetic energy does the electron lose when it strikes 
the TV screen? 

Given: Qe = 1.6  10-19 C 
 V = 22 000 V 
Find: Ek or W 

 

Therefore, 
Q

W
V 

 
JCVVQW 1519 105.3)106.1)(22000(    
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FIELD BETWEEN TWO PARALLEL CHARGED PLATES 

 

When a potential difference is applied across a pair of parallel plates, a uniform electric 
field is established which is dependent on the separation of the plates. 

 
The work done to move a charge, q, a distance d between the plates is: dFW .  

Since  EqF   ,   EqdW      (1) 

Also Voltage (potential difference), V, is  
q

W
V   , 

Therefore       VqW      (2)     

Equating equations (1) and (2) EqdVq  ,  

Thus,                              EdV   

Where :  V  =  potential difference (V) 

   E  =  electric field strength between the plates 









m

V

C

N
  

   d  =  separation distance of the plates (m) 

EXAMPLE 

Two oppositely charged plates are separated a distance of 3 cm and attached to a 

potential difference of 12 V. 

(a) Calculate the electric field strength between the plates. 
(b) What is the force on an electron in the plates?     
 (Charge of an electron = 1.06 x 10-19 C) 

Solution: (a) E  =  
d

V
  =  

m

V

3.0

12
  =  400  

C

N
 

  (b) F  =  Eq   =  ( 400 N/C ) ( 1.0 x 10-19 C )  =  6.4 x 10-17 N 
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Points to Note: 

 If the electric field E is uniform, the force on a charge is independent of the 
position of the charge in the field. ( F = Eq ) 

 Electric field strength E is given by:  E  =  
d

V
  , units 










m

V

C

N
 

 Work done on a charge q is:   W = Eqd 

 The work done on a charge becomes the EK (kinetic energy ) of the charge; 

 
http://sdsu-physics.org/physics180/physics180B/Chapters/electric_potential.htm 

EXAMPLE 

A potential difference of 100 V is connected to two parallel plates. Calculate the velocity 

with which an electron leaving the negative plate strikes the opposite plate. (Charge, q = 

1.6 x 10-19 C, mass, m = 9.11 x10-31 kg) 

Work done = gain in EK
   : Eqd = ½ mv2 , Vq = ½ mv2 

      (100V)(1.6x10-19C) = ½ (9.11x10-31kg)v2 

       v    =    5.96 x 106 m/s 

 
MILIKAN’S OIL DROP EXPERIMENT 
A pair of parallel plates was set-up with                                                                                                              
a variable voltage. Oil drops were exposed to                                                                                                                       
X – Rays and they dropped through the hole                                                                                                        
between the plates. The variable voltage was                                                                                          
adjusted to bring the drops to equilibrium. 

 
 
 

 
 
 
 
When an oil drop becomes stationary, the gravitational and electrical forces are equal. 
From this Millikan was able to quantify the value of the smallest charge, (i.e. the 
electronic charge, e-). 
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Equating the electrical and gravitational forces; 
 
 Eq =  mg 

 
d

Vq
  = mg , 

V

mgd
q  ( m,d and V are measurable quantities.) 

 
Millikan discovered that only whole number values of charge were found. This means 
that charge occurs in discrete values. That is multiples of the smallest charge. 
 

  Q =  ne- unit  :  Coulomb (C) 

 
 Where  : n = number   ( n = 1,2,3,…. ) 
   e- = 1.6 x 10-19 C 
 
EXAMPLE  
In a Millikan experiment set – up, an oil drop of mass 2.05 x 10-12 kg is suspended 
between plates A and B. The plates are at a separation of 5 cm and at a potential 
difference of 500 V. 
 
(a) What is the polarity of A? 
  
(b) Calculate the electric field strength, E.         
       
(c) What is the charge on the oil drop?  
 
Solution: 
(a) The polarity of A should be positive. (+) 
 

(b) E = 
d

V
  = 

m

V

05.0

500
 =  10 000 NC-1 

(c) FE = Fg     Eq  =  mg  , q  =  
E

mg
  =  

  
CN

smkg

/10000

/101005.2 212

 
 
         =   2.05   10-15 C 
 
Note 
1. For charges being accelerated between a pair of parallel plates, the expression for 

velocity as the charge reaches the opposite plate is given by: 

Vq = ½ mv2 , v  =  
m

Vq2
 

2. The expression for acceleration is given by: 

Equating  F = ma, and  F = Eq , a  =  
m

Eq
 

 [   V = potential difference (V), and  v  =  velocity (m/s) ] 
 
 
 



CHAPTER 5 ELECTRICITY 

123 
 

THE ELECTRON VOLT 
An electron volt (eV) is the energy acquired by an electron in moving through a Potential 
Difference of 1 volt. 

 

JeV x106.1
191   

EXERCISES 
 
COULOMBS LAW 
 

1. Calculate the electrostatic force between two charges of +6nC and +1nC if they are 
separated by a distance of 2 mm. 
 

2. When sugar is poured from the box into the sugar bowl, the rubbing of sugar grains 
creates a static electric charge that repels the grains, and causes sugar to go flying out in 
all directions. If each of two sugar grains acquires a charge of 3.0  10-11 C at a separation 
of 8.0  10-5 m, with what force will they repel each other? 
 

3. Calculate the distance between two charges of +4nC and -3nC if the electrostatic force 
between them is 0.005 N. 
 

4. Lusiana is dusting the house and raises a cloud of dust particles as she wipes across a 
table. If two 4.0  10-14 C pieces of dust exert an electrostatic force of 2.0  10-12 N on 
each other, how far apart are the dust particles at that time? 
 

5. Calculate the charge on two identical spheres that are similarly charged if they are 
separated by 20 cm and the electrostatic force between them is 0.006 N. 
 

6. Miriam uses hairspray on her hair each morning before going to school. The spray 
spreads out before reaching her hair partly because of the electrostatic charge on the 
hairspray droplets. If two drops of hairspray repel each other with a force of 9.0  10-9 N 
at a distance of 0.070 cm, what is the charge on each of the equally-charged drops of 
hairspray? 
 

7. Two insulated metal spheres carrying charges of +6nC and -10nC are separated by a 
distance of 20 mm. 

a) What is the electrostatic force between the spheres? 
b) The two spheres are touched and then separated by a distance of 60 mm. 

What are the new charges on the spheres? 
c) What is the new electrostatic force between the spheres at this distance? 

 
ELECTRIC FIELD 
 

1. In an experiment, a positively charged oil droplet weighing 6.5 x 10-15 N is held stationary 
by a vertical electric field.  If the electric field strength is 5.3 x 103 N/C, what is the charge 
on the oil droplet? 
 
A. 1.2 x 10-18 C  B. 3.4 x 10-11 C  C. 4.1 x 104 C  D. 8.2 x 1017 C 
 

2. A flash of lightning between a cloud and the earth causes a potential difference of 109 V 
which results in the movement of 40 C of charge in a time of 10-2 s. 

 



CHAPTER 5 ELECTRICITY 

124 
 

i. The average current produced by a flash of lightning in ampere, would be 
 

A. 0.4  B. 40  C. 400  D. 4 000 
 

ii. The energy transferred in J, would be 
 

A. 4 x 109  B. 4 x 1010  C. 4 x 1011  D. 4 x 1012 

 
3. When 1014 electrons are removed from a neutral metal sphere, the charge on the sphere 

becomes 
 
A. 32  µC  B. 16  µC  C. -16 µC  D. -32 µC 
 

4. The work done in moving a charge of 450nC from one point to another to achieve a 
potential difference of 6V would be 
 

A. 6 nJ   B. 75 nJ  C. 450 nJ  D. 2700 nJ 
 

5. Calculate the potential difference between two parallel plates if it takes 5000 J of energy 
to move 25 C of charge between the plates? 
 

6. Calculate the electric field between the plates of a capacitor if the plates are 20 mm apart 
and the potential difference between the plates is 300 V. 
 

7. Calculate the electrical potential energy of a 6nC charge that is 20 cm from a 10nC 
charge. 
 

8. The figure below shows a 500 N/C uniform electric field. The distance between points  A 
and B is 2.0 m while the distance between points B and C is 1.0 m. 

 
Which of the following best describes the potential difference between the points A, B 
and C? 
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9. A thunder cloud at 100 km above the ground contains positive charges. The potential 
difference between the cloud and the ground is 1000 V. 

 
i. Draw the uniform electric field lines between the cloud and the ground. 

ii. Calculate the uniform electric field strength between the cloud and the ground. 
iii. If an electron moves from the ground towards the cloud, calculate the work done 

by the electric field on the electron. (Neglect the effect of gravity on the electron) 
 

ENERGY CONSERVATION 
1. This question is about an experiment designed to measure the charge on an electron. In 

this experiment, ‘Millikan’s Oil Drop Experiment’, two parallel metal plates, 3.2  10-2 m 
apart, are connected to a 600 V power supply. 

 
i. Calculate the electric field strength between the two plates. 

ii. The electric field between the plates just supports the weight of an oil drop of 

mass 1.8  10-15 kg, which has acquired a charge due to a few excess electrons.  
Given that the oil drop is stationary, calculate the charge on the oil drop. 

iii. What is the most likely number of excess electrons acquired by the oil drop? 
 

2. Shown below are two closely spaced metal plates connected to a 240 V supply. 

 
 
A uniform electric field exists between the plates. 

a) Draw the electric field pattern between the two plates. 
b) If the plates are 5 cm apart, find the work done on an electron travelling from the 

negative to the positive plate. 
 

3. An oil drop of mass 5.20   10-10 kg  is suspended between two parallel plates. The 
electric field between the plates is 520 N/C downwards. 
(i) Explain why the charge on the oil drop is negative. 
(ii) Determine the magnitude of charge on the oil drop. 
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4. An electron of charge 1.6 x 10 -19 C passes through the deflecting plates of a cathode ray 
tube. 

a) The deflecting plates are maintained at a voltage of 45 V, and are 8.0 mm apart.  
Calculate the electric field strength between the plates. 

b) The charge on an electron is 1.6 × 10-19 C.  Calculate the electric force on an 
electron between the plates. 

 

5. State one significant conclusion from the Millikan oil drop experiment. 
 

6. How many electrons are there in an oil drop that has a charge of 4.0 coulombs? 
 

7. An electron is injected into a region of uniform electric field of magnitude E = 1 x 105 N/C 
as shown below. 

 
Calculate the initial acceleration of the electron.   
 

8. The terminals of a 100V battery are connected between two parallel metal plates, 20 mm 
apart as shown below. 

 
(i) Find the electric field strength between the plates. 
An electron is released from rest from the negative plate 
(ii) Calculate the energy gained by the electron in moving between the plates. 
(iii) Determine with what velocity the electron arrives at the positive plate. 
(iv) What would be the acceleration of the electron ? 
(v) How long does it take the electron to travel between the plates ? 
 

5.2 CURRENT ELECTRICITY 

CURRENT AND RESISTANCE 
Current is the amount of charge that passes through an area in a given amount of time. 
 

Time

eCh
Current

arg
  or 

t

q
I




  

The SI unit for current is the ampere (A), which equals one coulomb per second (C/s). 
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Resistance is an opposition to the flow of charge. 
For a given source voltage, the resistance of a circuit determines how much charge will 
flow in the circuit. When charge passes through a resistance, some electrical energy is 
changed to other forms. This is produced by a potential difference (voltage) across the 
resistance. 
 

ResistanceCurrentDifferencePotential   

IRV   

The SI unit for resistance is the ohm (), which equals one volt per amp (V/A). 
 
POWER 
Power is the amount of work done in a given unit of time. 

IV
t

qV

t

W
PPower 




,  

 
The SI unit for electrical power is the watt (W), which equals one joule per second (J/s). 
 

Since P = IV and 
I

V
R  , Power dissipated in a conductor can also be expressed as 

RIP 2  or 
R

V
P

2

  

 
SERIES AND PARALLEL CIRCUITS 
 
When multiple resistors are used in a circuit, the total resistance in the circuit must be 
found before finding the current. Resistors can be combined in a circuit in series or in 
parallel. 
 
Resistors in Series 
 
When connected in series, the total resistance, RT, is equal to 
 
 

RT = R1 +R2 + R3 + ………. 
 
 

 
 
In series, the total resistance is always larger than any individual resistance. 
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Current in series resistors: In series circuits, charge has only one path through which to 
flow. Therefore, the current passing through each resistor in series is the same. 

ITOTAL = I1 = I2 = I3 

 
Voltage across series resistors: As charge passes through each of the resistors, it loses 
some energy. This means that there will be a voltage drop across each resistor. The sum 
of all the Voltages equals the Voltage across the battery, assuming negligible resistance in 
the connecting wires. 

VTOTAL = V1 + V2 + V3 

 
Resistors in Parallel 
When connected in parallel, the total resistance, RT, is equal to 
 

........
1111

321


RRRRT  

Don’t forget! After finding a common denominator and determining the sum of these 

fractions, flip over the answer to determine RT. 

 
 
In parallel circuits, the total resistance is always smaller than any individual resistance. 
 
Current in parallel resistors: In parallel circuits, there is more than one possible path and 
current divides itself according to the resistance of each path. Since current will take the 
“path of least resistance,” the smallest resistor will allow the most current through, while 
the largest resistor will allow the least current through. The sum of the currents in each 
parallel resistor equals the original current entering the branches. 
 

ITOTAL = I1 + I2 + I3 

 
Voltage in parallel resistors: The potential difference across each of the resistors in a 
parallel combination is the same. If there are no other resistors in the circuit, it is equal to 
the potential difference across the battery, assuming negligible resistance in the 
connecting wires. 
 

VTOTAL = V1 = V2 = V3 
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EXAMPLE 
Find the total resistance of the three resistors connected in series. 
 

 
 

 RT = R1 + R2 + R3 = 12 + 4 + 6 = 22. 
 
EXAMPLE 
Find the total resistance of the same three resistors now connected in parallel. 

321

1111

RRRRT

    

6

1

4

1

12

11


TR
   


2

1

12

61

TR
 

 

  2TR  

 
 
EXAMPLE 
A circuit diagram is given below. 
 
Find the: 
(i) total resistance of the circuit  
(ii) total current of the circuit  
(iii) voltage drop through the 

a) 15 Resistor 

b) 30 Resistor 

c) 10 Resistor 
(iv) power dissipated by the 30 Ω resistor 
 
Soln: 
(i) RTOTAL = R1 + R2 +R3 

RT = 15  + 30  + 10  = 55  
 

(ii) Total Current, from Ohm’s Law: 



55

25V

R

V
I

T

T
T    AIT 455.0  

 
(iii) Voltage drop: since the current passing through each resistor in series is the 
same, therefore 
 

a) Vdrop(15 ) = IR   V = (0.455A) (15 ) = 6.825 Volts 

b) Vdrop(30 ) = IR   V = (0.455A) (30 ) = 13.65 Volts 
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c) Vdrop(10 ) = IR   V = (0.455A) (10 ) = 4.55 Volts 
 
(iv) Power dissipated, P = VI   P = (13.65 V)(0.455 A) = 6.21 Watts 
 

Or use  P = I2R  P = (0.455 A)2(30 ) = 6.21 Watts 
 
EXAMPLE 
A circuit diagram is given below. 

 
Find the: 
(i) total resistance of the circuit 
(ii) total current of the circuit 
(iii) current through the 

a) 10 Ω resistor 

b) 30  resistor 

c) 15  resistor 
(iv) power dissipated by the 30 Ω resistor 
 
Soln: 

(i) 
321

1111

RRRRT

   
10

1

30

1

15

11


TR
  

5

11


TR
 

 

Therefore,  5TR  

(ii) Total Current, from Ohm’s Law: 



5

25V

R

V
I

T

T
T    AIT 5  

(iii) Since the voltage across each of the resistors in a parallel combination is the 
same: 
 

a) I (10) = 
R

VT  = 
10

25V
  AI 5.2)10(   

b) I (30) = 
R

VT  = 
30

25V
  AI 833.0)30(   

c) I (15) = 
R

VT  = 
15

25V
  AI 67.1)15(   
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(iv) Power dissipated, P = VI   P = (25 V)(0.833 A) =  20.83 Watts 
 

Or  use P = 
R

V 2

 P = 
30

252

  = 20.83 Watts 

 
 
EXAMPLE 

1. For the circuit diagram shown below: 
 

 
Find the: 
(i) total resistance of the circuit 
(ii) total current of the circuit  

(iii) Voltage drop through the 10  resistor 
(iv) current through the 

a) 15 Ω resistor  

b) 30  resistor 
(v) power dissipated by the 30 Ω resistor 

 
Soln: 
 
(i) This circuit contains resistors in parallel that are then combined with a resistor in 

series. Always begin solving such a resistor combination by working from the 
inside out. In other words, first determine the equivalent resistance of the two 
resistors in parallel before combining this total resistance with the one in series. 

 

21

111

RRRP

  = 
30

1

15

1
    

10

11


PR
 10PR  

Now, combine this equivalent resistance with the resistor in series. 

SPT RRR    =  1010  = 20   

 

(ii) Total Current, from Ohm’s Law: 



20

25V

R

V
I

T

T
T    AIT 25.1  

 

(iii) Vdrop(10) = IR = (1.25A) (10 ) = 12.5 V 
 

(iv) Current through 15 and 30 resistor: 
 

2. A is the current through the entire circuit. Use this current to find the voltage across the 
parallel combination. Remember, the voltage across resistors wired in parallel is the 
same regardless of which path is taken.  

Therefore, Resistors in parallel, RP = 10  

  Voltage through parallel circuit: V = IRP =   (1.25 A) ( 10 )  =  12.5 V 
 

(a) Current through 15 : 



15

5.12 V

R

V
I  = 0.833 A 
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(b) Current through 30 : 
30

5.12 V

R

V
I   = 0.417 A 

 
NOTE: 0.833 A + 0.417 A  =  1.25 A  =  Total Current. 
 
(v) Power, P = VI = (12.5 V) (0.417 A) = 5.213 W 
 
 
SAFETY DEVICES IN THE HOMES 
 
In an electric circuit, fuses and circuit breakers act as safety devices. They prevent circuit 
overloads that can occur when too many appliances are turned on at the same time or 
when a short circuit occurs in one appliance. 
 
A properly designed electrical system is very safe. However, when problems occur, 
electricity can generate dangerous heat and can be fatal to people and animals 
 
FUSES 

 
[http://www.a1telecom.com/theshop/radio-accessories/fuses/workman-agc-glass-tube-fuse-100-pack.html] 

 

A fuse is inserted into a circuit to protect the device from receiving too much current 
when shorted. It is a device which contains a very thing conductor inside. Its function is 
that if the current exceeds more than needed, the fuse melts and breaks the circuit.  
Example: a Fuse rated 0.25A (250mA), will break if the current exceeds 250mA. 
 
CIRCUIT BREAKER 

     
Residual Current circuit breaker  Mini Circuit Breaker 

[http://www.made-in-china.com/showroom/meywon8/product-detaildMinfkrFbGhD/China-Mini-Circuit-Breaker-DZ47LE-63-.html] 
 

A circuit breaker has the same function as the fuse. If a surge of current is evident 
through a line, the circuit breaker "breaks" the line, opening the flow of current. 

Circuit breakers are mechanical switches that open when an electrical fault is detected. 
Circuit breakers have replaced fuses in modern electrical systems. In a fuse, excess 
electricity or heat melts a metal strip, thus interrupting the flow of electricity.  
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The problem with fuses is that they only can be used once. A circuit breaker can be 
switched back on as part of trouble-shooting or when the fault has been fixed. 

Simple domestic circuit breakers are designed to prevent damage to home wiring. 
Damage is usually caused by plugging too many high power devices, like electric heaters, 
appliances and high power lights, in to a circuit. When the circuit breaker senses the 
overload, it trips interrupting the flow of electricity and preventing damage to home 
wiring. 

A current as small as 5 mA flowing through a person could result in electrocution. A 
ground-fault interrupter (GFI) in an electric outlet prevents such injuries because it 
contains an electronic circuit that detects small differences in current caused by an extra 
current path and opens the circuit. The earthing system is there as a safety ring around 
the installation. 
Electric codes for buildings often require ground-fault interrupters to be used in 
bathroom, kitchen, and exterior outlets. 

 

http://homerepair.about.com/od/termsgn/g/gloss_GFI.htm 

EXERCISES 

1. A circuit diagram is shown. 

 
Calculate: 

a) The total resistance of the circuit. 
b) The current leaving the battery. 
c) The reading on the voltmeter. 
d) The current in the 3 Ω resistance 

 

2. Consider the following circuit and answer the                                                                               
questions that follow: 

a) Calculate the total resistance of the circuit. 

b) What is the voltage drop across the 3 Ω resistors? 

c) Calculate the energy dissipated in the 4 Ω resistors in 5 minutes. 
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3. Mark has a battery-operated CD player that he wants to connect to his car 

battery. The voltage of his car battery is 12.0 V and his CD player is marked “4.5 V, 

30 mA”. He knows that he cannot connect it directly to the car battery, so he 

decides to connect it in a circuit with a switch initially open as shown in the 

diagram below. 

 

(i) Calculate the resistance of the CD player.   
(ii) Calculate the voltage across the 187.5Ω                                                                                         

resistor if the CD player has the correct voltage                                                                                         

across it when the switch is closed. 

 

 

 

 

 

 

 

 

4. Refer to the diagram below and answer the questions that follow. 

 
 

(i) Determine the reading on the ammeter. 

(ii) Find the value of the unknown resistance, R. 
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CHAPTER 6: ELECTROMAGNETISM 

Electromagnetism is the science of the properties and relationship between electric 

currents and magnetism. An electric current creates a magnetic field and a moving 

magnetic field will create a flow of charge. This relationship between electricity and 

magnetism has resulted in the invention of many devices which are useful to humans. 

 6.1 MOTOR EFFECT 

When two magnets are close together, they affect each other and produce a force. The 

same happens when any two magnetic fields are close together. If a wire carrying a 

current is placed in a magnetic field a force is produced. This is called the motor effect. 

The direction of the force will depend on the direction of the magnetic field and the 

direction of the current in the field. 

The direction of movement of a current carrying wire in a magnetic field can be 

determined using Fleming’s Left Hand Rule. The current, magnetic field and force will always 

be at right angles to each other, so the wire will not move towards the poles. 

When a current carrying conductor is placed in a magnetic field, a FORCE is produced 

except when it is placed parallel to the magnetic field. 

 Current    +     Field      = Force (motion) 

 

The magnitude of the force is given by: 

 

Where:   

F= force 

B  =  magnetic field strength (T) 

   I =   current flowing (A) 

   L =   Length of conductor (wire) in the field (m). 

   ϴ = angle the conductor makes with the magnetic field 
 

An electrical motor is a device that converts electrical energy to mechanical energy. It 

works on the principle of the interactions between the magnetic fields of a permanent 

magnet and the field generated around a coil conducting electricity. The attractive and 

repulsive forces between the magnet and the coil create rotational motion. 

sinBILF   
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LENGTH OF CONDUCTOR IN THE FIELD 

When a current is passed through a wire placed in a magnetic field a force is produced 

which acts on the wire. 

 

Example 

Use Fleming’s Left Hand Rule to work out the direction of the force that will act on the 

conductors shown in the magnetic fields, below. 

 

 
 When a conductor carrying a current is placed in a magnetic field, the conductor will 

experience a force. The reason for this is that the current in the conductor creates a 

surrounding magnetic field which is either repelled or attracted to the field in which it is 

placed. The force depends on the following 
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 The magnetic field strength (density of the magnetic flux)     = B   [Tesla] 

 The current passing through the wire                                    = A          [Amps] 

 The length of the conductor in the field                                =  L          [ meters] 

When the conductor is placed 90
o to the magnetic field it experiences the maximum 

force )190(sin  .  

 BILF   

Example  

If a conductor of length 0.4m carrying a current of 10.6A is placed in a magnetic field 

stength of 0.003T, determine the force experienced by this conductor in Newtons. 

F = BIL 

                       F = (0.03) (10.6) (0.4) 

       = 0.13N 

THE ELECTRIC MOTOR 

In its simplest form a DC motor consists of a single turn coil of wire that is free to rotate 

in a magnetic field about an axle. Carbon brushes make contact with the ends of the coil 

that are connected to a commutator so that a current can be passed through the coil 

 
Simple electric Motor 

 

The sequence of diagrams below shows the coil from an end-on view, making it easy to 

see how the forces acting on each side of the coil produce a turning effect about the axle. 

Diagram c) shows that the turning effect is zero when the coil is parallel to the 

permanent magnets (because the line of action of the forces passes through the axis of 

rotation). This might suggest that the coil stops in this position, but it will inevitably 

overshoot, and as soon as it does so, the commutator will reverse the direction of the 

current in the coil which means the coil will continue to spin.  
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 If the current is reversed, the motion will be in the opposite direction 

 If the field is reversed, the motion will change direction again. 
 

Example 

State three ways in which you could change the design of a DC motor to make it spin 
faster for a given load. 
 

Increase the strength of the magnetic field. Put more turns on the coil. Pass a larger 
current through the coil. 
 

(But note that if the maximum design current for a motor is exceeded then the motor is 

likely to burn out.) 
 

MOTION OF A CHARGED PARTICLE IN A MAGNETIC FIELD 
 

When a charged particle moves through a magnetic field it experiences a force. For a 

particle that is moving at right angles to the magnetic field, the force is given by: 

            

   

 Where  F is the force 

   q is the charge on the particle,  

   v is the velocity of the particle and  

   B is the magnetic field through which the particle is moving 

 
EXAMPLE 

An electron travels at 150 ms−1 at right angles to a magnetic field of 80 000 T. What force 

is exerted on the electron? 

ANSWER 

We are required to determine the force on a moving charge in a magnetic 

field 

F = qvB 

BvqF   
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We are given 

 q = 1.6 × 10−19C (The charge on an electron) 

 v = 150 m/s 

 B = 80 000T 

   Using 

F = qvB 

= (1.6 × 10−19 C) (150 ms−1) (80 000T)  

= 1.92 × 10−12 N 

The direction of the force exerted on a charged particle moving through a magnetic field 

is determined by using the Right Hand Rule. 

 

Point your fingers in the direction of the velocity of the charge and turn them towards 

the direction of the magnetic field. Your thumb will point in the direction of the force. If 

the charge is negative, the direction of the force will be opposite to the direction of your 

thumb. 

CIRCULAR MOTION IN A MAGNETIC FIELD 

Charged particles in a magnetic field feel a force perpendicular to their velocity. Since 
their movement is always perpendicular to the force, magnetic forces due no work and 
the particle’s velocity stay constant. Since the force is F = qvB in a constant magnetic 
field, a charged particle feels a force of constant magnitude always directed 
perpendicular to its motion. The result is a circular orbit. 

The diagram below represents constant magnetic field for two cases. On the left the 
magnetic field is pointed into the page while on the right the field lines are exiting the 
page. The crosses indicate the field is directed into the page. One can think of this as the 
tail of a feather as it travels away from view, whereas the dots represent the point of the 
approaching arrow.  

The fact that the field is uniform is indicated by the equal spacing of the arrows. Using 
the right-hand rule one can see that a positive particle will have the counter-clockwise 
and clockwise orbits shown below.  
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The radius of the orbit depends on the charge and velocity of the particle as well as the 
strength of the magnetic field. The acceleration of a particle in a circular orbit is: 

 

Using F = ma, one obtains: 

 

Thus the radius of the orbit depends on the particle's momentum, mv, and the product of 
the charge and strength of the magnetic field 

6.20 GENERATOR 

When a conductor moves through a magnetic field, there will be a generated voltage. 
The voltage generated in a length of wire, presuming that the entire length moves 
through a uniform field, is given below. 

     

 

V- Voltage 
B - Magnetic Field Strength 
L - Length of conductor (in meters) 
v - Velocity of conductor moving through the field 
𝝦- is the angle (in degrees) 

To increase the voltage or current generated: 

1. Spin the coil faster. 
2. Put more loops on the coil. 
3. Use a stronger magnetic field. 
4. Use a coil with a larger area. 

 
A generator converts mechanical energy into electrical energy. 

AC GENERATOR 
The principle of rotating a conductor in a 
magnetic field is used in electricity 
generators.   

The layout of an AC generator is shown 
below. The conductor in the shape of a 
coil is connected to a ring. The conductor 
is then manually rotated in the magnetic 
field generating an alternating emf. The 
slip rings are connected to the load via 
brushes. 

sinBLvV   
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If a machine is constructed to rotate a magnetic field around a set of stationary wire coils 
with the turning of a shaft, AC voltage will be produced across the wire coils as that shaft 
is rotated, in accordance with Faraday’s Law of electromagnetic induction. This is the 
basic operating principle of an AC generator. 
 

In an AC generator the two ends of the coil are each attached to a slip ring that makes 
contact with brushes as the coil turns. The direction of the current changes with every 
half turn of the coil. As one side of the loop moves to the other pole of the magnetic 
field, the current in it changes direction. The two slip rings of the AC generator allow the 
current to change directions and become alternating current. 
 

AC generators are also known as alternators. They are found in motor cars to 
charge the car battery. 

 

DC GENERATOR 

 

A DC generator is constructed the same way as an AC generator except that there is one 
slip ring which is split into two pieces, called a commutator, so the current in the external 
circuit does not change direction. The layout of a DC generator is shown in below. The 
split-ring commutator accommodates for the change in direction of the current in the 
loop, thus creating DC current going through the brushes and out to the circuit. 

 
The shape of the emf from a DC generator is shown in Figure 28.5. The emf is not steady 
but is more or less the positive halves of a sine wave. 

 
AC VERSUS DC GENERATORS 

The problems involved with making and breaking electrical contact with a moving coil 
should be obvious (sparking and heat), especially if the shaft of the generator is revolving 
at high speed.  
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If the atmosphere surrounding the machine contains flammable or explosive vapors, the 
practical problems of spark-producing brush contacts are even greater. 
  

An AC generator (alternator) does not require brushes and commutators to work, and so 
is immune to these problems experienced by DC generators. The benefits of AC over DC 
with regard to generator design are also reflected in electric motors. While DC motors 
require the use of brushes to make electrical contact with moving coils of wire, AC 
motors do not. In fact, AC and DC motor designs are very similar to their generator 
counterparts.  
 

The AC motor being dependent upon the reversing magnetic field produced by 
alternating current through its stationary coils of wire to rotate the rotating magnet 
around on its shaft, and the DC motor being dependent on the brush contacts making 
and breaking connections to reverse current through the rotating coil every 1/2 rotation 
(180 degrees). 

Lenz’s Law 

In 1834, German physicist Heinrich Friedrich Lenz (1804-1865) deduced a rule, known as 
Lenz’s law which gives the polarity of the induced emf in a clear and concise fashion. The 
statement of the law is: 
 

The polarity of induced emf is such that it tends to produce a current which opposes the 
change in magnetic flux that produced it. 
 

EXAMPLE 1 Magnet is moving towards the coil. 

When the North Pole end of the magnet is approaching the coil, the magnetic flux linking 

the coil will increases. According to Faraday's law of electromagnetic induction, when 

there is change in flux, an emf and hence current is induced in the coil and this current 

will create its own magnetic field. Now according to Lenz's law, this magnetic field 

created will oppose its own or we can say opposes the increase in flux through the coil 

and this is possible only if approaching coil side attains north polarity, as we know similar 

poles repel each other. Once we know the magnetic polarity of the coil side, we can 

easily determine the direction of the induced current by applying right hand rule. In this 

case, the current flows in anticlockwise direction. 

 

 
EXAMPLE 2 Magnet is moving away from the coil 

When the north pole of the magnet is moving away from the coil, the magnetic flux 
linking to the coil will decreases. According to Faraday's law of electromagnetic induction, 
an emf and hence current is induced in the coil and this current will create its own 
magnetic field.  

http://www.electrical4u.com/electric-current-and-theory-of-electricity/
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Now according to Lenz's law, this magnetic field created will oppose its own or we can 
say opposes the decrease in flux through the coil and this is possible only if approaching 
coil side attains south polarity, as we know dissimilar poles attract each other.  
 

Once we know the magnetic polarity of the coil side, we can easily determine the 
direction of the induced current by applying right hand rule. In this case, the current 
flows in clockwise direction. 

 

 

ELECTROMOTIVE FORCE (EMF) INDUCED BETWEEN THE ENDS OF THE CONDUCTOR  

When a conductor moves through a magnetic field, an EMF is induced across it. If the 
conductor was connected to an external circuit, a current would flow just like a battery. 
The Emf generated depends upon the following 

 The magnetic field strength = B [ Tesla ] 

 The length of the conductor in the field = L [ meters] 

 The speed of the conductor = v [ metres per second] 

 

 

Consider a conductor in a magnetic field where 

the magnetic field flows from North to South 

Pole. If the conductor is moved through the 

field in the direction shown below, the emf will 

have the polarity shown. When the conductor is 

placed 90
o to the magnetic field it induces 

maximum emf )190(sin  .  

 BLvV   

 

Example  
 
Calculate the emf induced across the ends of a wire of length 0.3m when it is moved 

through a magnetic field strength of 0.015T at a speed of 50 m/s. 

V = BLv 

                        = (0.015) (0.3) (50) 

    = 0.23V 

 

If the conductor is connected to a closed circuit, the direction of the current flow can be 

found using Fleming’s Right Hand Rule. 
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 If the motion is reversed, the current will be in the opposite direction.   

 If the field is reversed, the current will also change direction again. 

 

The EMF in a single conductor is small. However, it can be increased by moving the 

conductor at a higher speed or by making the field denser (increasing the magnetic field 

strength) by forming a coil with many turns. The total EMF is found by multiplying the 

EMF of a single conductor by the number of turns. 

 

Example  

A 200 turn coil has a radius of 0.12 m and length of 0.23m. It is placed in a magnetic field 

strength of 0.06T and rotated at 3000rpm. When the coil is in its vertical position at right 

angles to the field, calculate the EMF. 

v  = 2 𝝅 r N/60 

                           = ( 2) ( 𝜋) ( 0.12) (3000/60) 

 = 37.70 m/s 

 

     V = BLv 

                   =  (0.06) (0.23) ( 37.70) 

           = 0.52V 

THE TRANSFORMER 

 
Definition:  

A transformer is an electrical device that uses the principle of induction between the 
primary coil and the secondary coil to either step-up or step-down voltage. A step-up 
transformer results in an increased voltage.  A step-down transformer results in a 
decreased voltage.  

The essential features of a transformer are two coils of wire, called the primary coil and 
the secondary coil, which are wound around different sections of the same iron core to 
intensify the magnetic field in the primary. 
 
When an alternating voltage is applied to the primary coil it creates an alternating 
current in that coil, which induces an alternating magnetic field in the iron core, thus 
creating a changing magnetic field that thread through the secondary.  Thus, there is a 
changing magnetic flux in the secondary coil, which produces a current in that coil.  
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 Since the magnetic field is changing at a given frequency, the current induced in the 
secondary coil is also an alternating one. 
 

 
 

Transformers consist of a core made from thin 

sheets of a magnetically soft material clamped 

together. Two separate coils of wire, insulated from 

one another, are tightly wound onto the core. 

Transformers are designed to perform the job of 

changing voltage with very little power loss → you 

may assume that they are 100% efficient. 

 

 

If np > ns then the transformer steps down the input voltage; if ns > np then the transformer 

steps up the input voltage. 

 

EXAMPLE  

A transformer is designed to step down the mains voltage of 230 V to 11.5 V. If there are 

1200 turns on the primary coil how many turns should be wound on the secondary coil? 

 

Rearrange 
𝑉𝑝

𝑉𝑠
 = 

𝑛𝑝

𝑛𝑠
  to give ns = 

𝑉𝑠

𝑉𝑝
  × np So, ns = 

11.5 𝑉

230𝑉
 × 1200 

 

Therefore, ns = 60 turns 

In an ideal transformer no energy is lost and so the energy input is the same as the 
energy output per unit time.  We can write this as: 

 

 
 

TRANSMISSION OF ELECTRICAL ENERGY 

Transformers are used in the transmission of electric energy over large distances. 

Transmission lines have low but not zero resistance. Power loss due to this resistance is 

given by the formula 𝑃 = 𝐼2 𝑅 , and this means that the power losses betweeen the 

 

 

p p

s s

input primary voltage primary turns
=

output secondary voltage secondary turns

V n
=

V n

 

Power in = Power out 

VP IP = VS IS 
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power station and the consumers would be acceptably large. As transformers are close to 

100% efficient. 

 

Power input = power out             so   Vp × Ip = Vs × Is →  
𝑽𝒑

𝑽𝒔
 = 

𝑰𝒔

𝑰𝒑
    (

𝒏𝒑

𝒏𝒔
) 

EXERCISES 

1. A square loop of aluminium wire is initially placed perpendicular to the lines of a constant 

magnetic field of 0.5 T. The area enclosed by the loop is 0.2 m2. The loop is then turned 

through an angle of 90° so that the plane of the loop is parallel to the field lines. The turn 

takes 0.1 s. What is the induced emf in the loop? 
 

2. A straight wire of mass 200 g and length 1.5 m carries a current of 2 A. It is suspended in 

mid-air by a uniform horizontal magnetic field B (Fig. 4.3). What is the magnitude of the 

magnetic field?  
 

3. Synchrotron is used in Nuclear Physics to produce high speed protons. A strong magnetic 
field is used to keep the protons in a circular orbit. Consider a proton traveling at 5 x 108 
m/s around a synchrotron with a 6 m diameter in a magnetic field of strength 0.08 T.  (The 
charge of a proton is 1.6 x 10-19C)  

 

(i) Calculate the magnetic force on the proton.     
(ii) Calculate the mass of the proton. 

 

4. An electron enters a uniform magnetic field of intensity 2.5 N/A-m (Tesla) at right angles 
with a speed of    6.5 x 103 m/s as shown below: 

 
 

(i) State the direction of the magnetic force experienced by the electron. 
(ii) Calculate the magnitude of the magnetic force experienced by the electron. 
(iii) Explain why the electron will follow a circular path. 
(iv) Determine the radius of the circular path followed by the electron in the magnetic 

field. 
 

5. A thick copper rod AB moves horizontally to the right at a uniform speed of 4 m/s as 

shown below. The ends of the rod slide along and make good contact with the 

conducting rails. The ends of the rails are joined through a 24Ω resistor and a uniform 

magnetic field of 0.9 T is directed into the page. 
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(i) Calculate the e.m.f induced across AB. 

(ii) State the direction of the current and the polarity at A. 

(iii) What is the current across the 24Ω resistor? 

(iv) Explain why a force is required to keep the rod moving at constant speed. 

 

6. The diagram given below shows a simple DC electric motor. 
 

 
The square coil WXYZ is a single turn and has a side length of 0.1 m. The current through 
the coil is 4A and the uniform field strength between the magnetic poles is 0.5 T. 

(i) Show the direction of the force on edge WZ and state direction of rotation of coil. 
(ii) Calculate the force acting on the side XY. 
(iii)What energy conversion takes place in an electric motor? 

 

7. The figure given below illustrates the principle of a simple A.C. generator. The end of the 

coil is connected to a galvanometer. 

 
Considering the coil to be rotating in a clockwise direction as indicated, 

i. Show the direction of the induced current in the coil 

ii. State two ways in which the deflection in the galvanometer can be increased. 
 

8. A metal rod slides to the left along horizontal parallel rails 2 m apart. The rod is 

connected in series to a power supply of 20 V and a resistor of 15 Ω as shown below. 
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(i) Calculate the current in the rod. 

(ii) Describe the motion of the rod when connected. 

(iii) Determine the magnitude and the direction of the magnetic force on the rod. 

9. A 1 .2 m rod AB is moved along a conducting track perpendicularly to a 2.5 T magnetic 

field directed into the page. A circuit is complete with the connection of a 6 ohm resistor 

as shown in the diagram. 

 
a) Which end of the rod, becomes positively charged as a result of the motion? 

b) How fast should the rod be moved to produce a current of 5 A? 

 

10. A positively charged particle of mass 4 x 10-20 kg  travelling to the right at a speed of 5 x 

104 m/s enters a region of uniform magnetic field. The force due to the magnetic field 

causes the particles to move in a circular path of radius 0.2 m. 

 
a) State the direction of magnetic field in the region. Is it upwards, downwards, to 

the right, to the left, into the page or out of the page? 

b) What is the centripetal force on the particle? 

c) If the magnetic field B = 0.25 T, calculate the charge on the particle that gives the 

force found in (ii) above. 

d) What would happen to the path of the particle if the magnetic field in the region 

was weaker? 
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11. A rectangular loop of copper wire with a 2Ω resistor connected to it is pulled to the right 

through a magnetic field of strength 4 T. 

 
(i) With what speed v should the loop be pulled so that there is an induced emf of 30 

volts? 

(ii) Calculate the energy dissipated in the 2Ω resistor in 30 seconds. 

(iii) Explain where this energy comes from.  

 

12. The diagram given below shows a transformer. 

 
(i) State with a reason whether it is a step-up or a step-down transformer. 

(ii) Calculate the output voltage of the transformer. 
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CHAPTER 7: ATOMIC PHYSICS 

7.1 RADIOACTIVITY 

There are three distinct forms of radiation, originally divided up based on their ability to pass 

through certain materials and their deflection in magnetic fields. 

Alpha ( ): could barely pass through a single sheet of paper. Alpha particles are deflected as 

a positive particle in a magnetic field.  

Beta (  ): can pass through about 3mm of aluminum. Beta particles are deflected as a 

negative particle in a magnetic field.  

Gamma ( ): can pass through several centimeters of LEAD! It is not deflected in a magnetic 

field. 

 

 

 

 

 

 

 

 

Radioactive decay, also known as nuclear decay or radioactivity, is the process by which a 

nucleus of an unstable atom loses energy by emitting ionizing radiation. 

RUTHERFORD’S EXPERIMENTS  
 

In 1911, Ernest Rutherford (1871–1937) and his students Hans Geiger and Ernest Marsden 

performed a critical experiment that showed that Thomson’s model could not be correct. In 

this experiment, a beam of positively charged alpha particles (helium nuclei) was projected 

into a thin metallic foil such as the target shown in Figure below.  

 

Most of the particles passed through the foil as if it was empty space, but some of the results 

of the experiment were astounding.  

 

Many of the particles deflected from their original direction of travel were scattered 

through large angles. Some particles were even deflected backward, completely reversing 

their direction of travel! 

Source: studyphysics.ca 
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Rutherford made 3 observations: 

 Most of the fast, highly charged alpha 

particles went whizzing straight through 

undeflected. This was the expected result for all of 

the particles if the plum pudding model was 

correct. 

 Some of the alpha particles were deflected 

back through large angles. This was not expected. 

 A very small number of alpha particles 

were deflected backwards! This was definitely not 

as expected. Rutherford later remarked "It was as 

incredible as if you fired a 15-inch shell at a piece 

of tissue paper and it came back at you. 

Rutherford reasoned that the only way the alpha particles could be deflected backwards was 

if most of the mass in an atom was concentrated in a nucleus. He thus developed the 

planetary model of the atom which put all the protons in the nucleus and the electrons 

orbited around the nucleus like planets around the sun. 

 

 

 

 

On the basis of these observations Rutherford made the following conclusions: 

 Since most of the alpha particles passed straight through the gold foil without any 

deflection, most of the space within the atoms is empty. 

 Since some of the alpha particles (which are big in size) were deflected by large angles 

or bounced backwards, they must have approached some positively charged region 

responsible for the deflection. This positively charged region is now called the nucleus. 
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 As very few alpha particles undergone the deflection, it was concluded that the 

volume occupied by the central region (nucleus) is very small. 

 Since alpha particles which are relatively denser, were deflected by the central volume 

of charge, it shows that almost the complete mass of the atom must be within the 

central volume. 

 Drawbacks of Rutherford’s Model  

The Rutherford’s atomic model explains the structure of an atom in a very simple way. But it 

suffers from the following drawbacks: 

(i) An electron revolving around the nucleus gets accelerated towards the nucleus. An 

accelerating charged particle must emit radiation and lose energy. Thus, the electron 

in an atom must continuously emit radiation and lose energy and would slow down 

and will not be able to withstand the attraction of the nucleus. As a result it should 

follow a spiral path and ultimately fall into nucleus. 

(ii) Rutherford model of atom does not say anything about the arrangement of electron in 

an atom. 

Alpha Decay 

During an alpha decay, a nucleus is able to reach a more stable state be allowing 2 protons 

and 2 neutrons to leave the nucleus. This will result in a smaller nucleus, which is often the 

more stable arrangement. Because 2 protons and 2 neutrons are really just helium-4, the 

particle that is emitted is really helium. Because this helium is not just regular helium floating 

around in the air, but is “born” from nuclear decay, we usually don't call it a helium atom. 

Instead we call it an alpha particle. Alpha particles come out of the nucleus as just nucleons 

without any electrons. So, each alpha particle has a charge of +2e 

 

A helium nucleus, the alpha particle, of 2 protons and 2 neutrons is emitted at high 
speed/kinetic energy from the nucleus. 

Example: The iridium-168 isotope is known to go through alpha decays. Write out a decay 
equation that shows this process. 

Solution 

Beta- Decay e.g. the nuclear equation 

In the beta negative decay, the neutron becomes a proton (which stays in the nucleus) and an 
electron that goes out (the beta particle).  

Example:  
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Potassium-40 is known to go through beta positive decays. Write out the decay equation for 

this decay. 

Solution 

Gamma emission ( ): The emission of gamma radiation from a nucleus does not involve any 

change in the atomic (proton) number or mass number. 

Gamma radiation can only be stopped by stuff like a few inches of lead. This is because unlike 

the other two forms of decay, gamma decays emit a form of EMR, not a particle which allows 

it to pass through anything but the densest of matter. 

Example: 

The argon-40 that was produced in Example 4 is in an excited state, so it releases a burst of 

gamma radiation. Write the equation for this. 

Solution 

HALF LIFE 

The half-life of an element is the time it will take half of the parent atoms to trans mutate into 

something else (through alpha or beta decays, or another process) or it is the time it takes for 

half of a given amount to decay. 

Example 
Let say you have 100 g of radioactive C-14.  The half-life of C-14 is 5730 years.   

 (a) How many grams are left after one half-life? 

       50g 
 

 (b) How many grams are left after two half-lives? 

 

   

Example  

You have 160 g of an isotope with a half-life of 4 days.  How much will be left after 16 days?   

        You can work this out by saying: 4
4

16


days

days
 Half lives 

 

 
 

Example  

Given below is the decay curve for a 

radioactive isotope that emits only β-particles. 

Use the graph to find the value of the half-life of 

the isotope. The count rate drops from 400 to 200 

counts a minute in 8 minutes, so the half-life is 8 

minutes.  

gram100  gram50

 

gram25  
1 2 

gram160  1 gram80  gram10  gram40  2 3 4 
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7.2 PHOTOELECTRIC EFFECT  

The photoelectric effect occurs when light above a certain frequency (the threshold 

frequency) is shone on metals like zinc, and this causes electrons to escape from the zinc. The 

escaping electrons are called photoelectrons.  

It was shown in experiments that; 

 the frequency of the light needed to reach a particular minimum value (depending on 

the metal) for photoelectrons to start escaping the metal 

 the maximum kinetic energy of the photoelectrons depended on the frequency of the 

light not the intensity of the light 

The above two observation can only be explained if the electromagnetic waves are emitted in 

packets of energy (quanta) called photons, the photoelectric effect can only be explained by 

the particle behaviour of light. 
 

The diagram shows photons hitting the surface of a metal and photoelectrons being ejected. 

 
 
Photons with their Photon Energy and at least the threshold frequency hit a metal. If the plate 

is Zinc, UV will nudge the photoelectrons off, if gamma rays hit the metal they will be 

whipped off with more force. 

The surface photoelectrons absorb the energy and are emitted out of the metal with the 

excess energy in the form of Kinetic energy. 

 
If the intensity increases so that there are now more photons, more photoelectrons are 

emitted. But each photon arriving at the surface has the same photon energy therefore each 

photoelectron emitted has the same kinetic energy. 
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Photon Energy (The Einstein relation) 

Einstein assumed that each packet of light had a certain amount of energy. This energy must 
be proportional to its frequency. 
 

Energy of a photon, hfE   
 

Where h is Planck’s constant = 6.63 × 10 -34 Js and f is the frequency of the light. 
 

Using c = f λ we get 
 

E = hc / λ 
 

Where c is the speed of the electromagnetic waves 
 Because of the law of conservation of energy we can see that: 
 
 
 

    
 
 
 
 
 
 
 
 Definitions: 
 

Retarding / Stopping potential / Cut-off voltage ( Vco ) 

The potential applied to a photocell whereby the current in the circuit becomes zero. At this 

potential the electrons leaving the emitter plate have zero kinetic energy. 

Threshold frequency (fo) 

The minimum frequency of light needed for photoelectric effect to occur.  

Threshold wavelength (o) 

The maximum wavelength of light needed for photoelectric effect to occur. 
 

Work function (  ) 

The amount of energy needed for a photoelectron to eject from the metal surface. 

 

At threshold frequency or wavelength the following relation can be used:   c = foo 

 
A graph of kinetic energy (EK ) against frequency ( f ) of incident light in a photoelectric set-up. 
  

The Photon 
Energy 

= 
The Work 
Function 
Energy 

+ 
The   

Photoelectron’s 
Kinetic Energy. 

 
 

The 
Photoelectron’s 
Kinetic Energy. 

= 
The Photon 

Energy 
− 

The Work 
Function Energy 

 

EK                        =                    hf                           −                       
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EK  =  hf -  

 

 
 
Analysing the Einstein’s equation we get: 
  
Which corresponds to the linear equation   y   =  mx +   c 
 
It can be seen that from the graph that the slope represents the Plank’s constant (h), and the 

y-intercept is the negative of the work function ( ).  
 
It can also be deduced that the x – intercept is the threshold frequency ( fo ). 

 
Two other relations can be obtained are: 
 

   =  hfo  and  EK  =  eVco 
 
 

 
In photoelectric effect the unit of energy used is called the electron-volt ( eV ) 
 

 1 eV = 1.602 x 10-19 J  , 1 J  =  
eV1910602.1

1


  =  6.24 x 1018 eV. 

 

The Einstein’s equation can be further modified to give: 
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Example  
A radioactive material emits photons, each having energy of 1.6 x 10-13 J.  
 

(A).  Calculate the frequency of the electromagnetic radiation emitted by the radioactive 

material. 

E = hf 

   f = E/h 

                                                = (1.6 x 10-13 J)/ (6.63 × 10 -34 ) 

                = 241.33 Hz 

 
(B). Calculate the wavelength of the electromagnetic radiation. 

c = f λ 
λ = c/f 

                       = 3× 10 8/241.33 
                     = 1.26 × 10 6 m 

 

Example  
A photosensitive metal has work function of 3.0 eV. 

(A). What is the threshold frequency? 

  = hfo 

   fo = / h 

                                                   = (3× 1.6 × 10-19) / (6.63× 10 -34) 

                       = 7.24 × 1014 Hz 
 

(B). What is the cut off voltage used to reduce the photoelectric current to zero, if light of     

wavelength 450 nm is used? 

EK  =  eVco 

Vco  = EK /e 

        = 3eV/ e 

  = 3 V 

EXERCISES 

1. The photoelectric effect is the name given to the process where light waves striking 
the surface of a metal frees some electrons and produces an electric current.  How is it 
possible for a light wave to liberate an electron from a piece of metal? 

 

2. If all electromagnetic waves are made up of photons (discrete quanta), why don’t we 
hear the effect of each distinct packet of energy when we listen to a radio (which is 
being effected by a radio wave)? 

 

3. For biological organisms, more damage is done to cells by standing in front of a very 
weak (low power) beam of x-rays than in front of a much brighter red light.  How does 
the photon concept explain this situation that an 18th century physicist would have 
found paradoxical? 
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4. In photoelectric effect experiments, no photoelectrons are produced when the 
frequency of the incident radiation drops below a cut-off value (which varies 
depending on the metal used in the experiment), no matter how bright or intense the 
light is.  How can you explain this fact using a “particle” theory of light instead of a 
wave theory of light? 

 
5. What is the energy of one quantum of 5.0 x 1014 Hz light? 

 
6. A photon has 3.3 x 10-19 J of energy.  What is the wavelength of this photon?  What 

part of electromagnetic spectrum does it come from? 
 

7. Which as more energy, a photon of violet light or a photon of red light from the 

extreme ends of the visible spectrum?  How many times more energy does the bigger 

photon have? 

 
8. What is the lowest frequency of light that can cause the release of electrons from a 

metal that has a work function of 2.8 eV? 
 

9. The work function for a photoelectric material is 3.5 eV.  The material is illuminated 
with monochromatic light with a wavelength of 300 nm. What is the cut off frequency 
for that particular material? 

 
10. In studying a solid material for possible use in a solar cell (which turns light into 

electrical energy), material engineers shine a monochromatic blue light (λ = 420 nm) 
to produce photoelectrons.  They measure the maximum kinetic energy of the emitted 
electrons to be 1.00 x 10-19 J.  Predict what will happen when the engineers test the 
material with red light (λ = 700 nm).  Will the light dislodge electrons from the 
material?  If so, how much kinetic energy will those dislodged electrons have? 

 
11. The threshold wavelength for emission from a metallic surface is 500 nm.  

a) What is the work function for that particular metal? 
b) Calculate the maximum speed of a photoelectron produced by each of the 

following wavelengths of light:   
 

(i) 400 nm   
(ii) 500 nm   
(iii) 600 nm. 
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APPENDIX 

 The following amendments are made in the text book 

 

 

Sub-Topic Amendments  Page Number 
Forces  Added exercise questions 44 

Moments Added exercise questions 51 

Full projectile  Added diagram 56 

Projectile  Added exercise questions 59 

Conservation of momentum in two-D Added notes 
Added exercise questions 

63 
68 

Newton law of gravitation  Added notes 
Added exercise questions 

72 
73 

Albedo  
Greenhouse effect 
What cause the greenhouse effect 
Consequences of greenhouse effect 
Absorption graph of atmosphere 

Added notes 
Added exercise questions 

82 

Heat energy Added exercise 91 

Static fluids Added exercise 96 

Geometrical optics  Added exercise 102 

Waves Added exercise 113 

Electricity  Added exercise 133 

Electromagnetism 
Length of conductor in the field 
The electric motor 
EMF induced between the ends of the 
conductor 
 

Added notes 
 
 
 
 
Added exercise 

136 
 
 
 
 

146 

Radioactivity  
Drawbacks of Rutherford’s Model 
Half-life 

Added diagram and notes 
Added notes  

150 
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